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Abstract: Electric discharge machining (EDM) is widely employed for machining hard,
conductive materials. Tool rotation has emerged as an effective strategy to enhance debris
flushing and improve stability during deep-hole EDM drilling. This study proposes a
machine learning-based approach to evaluate the influence of tool rotation and predict
the unstable machining conditions in EDM of ultrafine grained tungsten carbide. A struc-
tured analytical workflow, combining Taguchi–Grey optimization, regression analysis,
and classification models, was designed to capture discharge dynamics across macro- and
micro-timescales. Classification models trained on raw and processed electrical signal
features achieved over 88% accuracy and 90% recall. SHAP analysis revealed that the
relationship between key discharge events such as sparks and short circuits varied sig-
nificantly across stable and unstable machining phases, underscoring the importance of
phase-specific modeling. While correlation analysis showed weak global associations,
phase-dependent SHAP values revealed opposing feature effects, allowing the context-
informed interpretation of model behavior. Phase segmentation revealed that, compared
to 1000 RPM, short circuits were reduced by about 40% during stable machining at
8000–9000 RPM. Conversely, during unstable phases, spark effectiveness dropped by
nearly 45%, and secondary discharges increased throughout this range. These insights
support the design of adaptive control strategies that adjust the rotation rate in response to
detected phase changes, aiming to sustain machining stability. The findings support the
development of dynamic control frameworks to improve EDM performance, particularly
for mold fabrication using tungsten carbide.

Keywords: electric discharge machining; deep hole drilling; process stability; machine learning

1. Introduction
Electrical discharge machining (EDM) is a non-traditional machining process that

removes material through controlled electrical discharges between a tool and a workpiece,
both submerged in a dielectric fluid [1]. Due to its non-contact nature and ability to
machine hard, brittle, and conductive materials, EDM is widely used in the aerospace [2],
biomedical [3,4], and mold industries [5,6].

Rotary EDM, wherein the tool is rotated during machining, has emerged as an effective
strategy to enhance debris flushing, stabilize the discharge process, and improve machining
performance. Studies have reported improvements in material removal rates [7,8], surface
finish [9], and tool life [10] with tool rotation assistance. However, while a moderate
increase in the rotation rate can enhance performance, at a higher rate the benefits plateau
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or even diminish due to excessive turbulence or arc formation [11,12]. This introduces
complexity in selecting the optimal tool rotation rate, especially because differences in the
machining behavior at different rotation rates are often subtle and non-linear.

Moreover, EDM is inherently a pseudo-random process at the micro-timescale, gov-
erned by complex interactions between electrical, thermal, and fluid dynamic phenom-
ena [13]. Traditional performance metrics, such as the material removal rate (MRR), tool
wear rate (EWR), and surface roughness (Ra, Sa), provide limited insight into the underly-
ing process stability. Consequently, there is growing interest in analyzing internal discharge
characteristics to better understand and optimize EDM operations.

To model and optimize EDM performance, various approaches have been devel-
oped, including Response Surface Methodology (RSM) [14,15], and Taguchi methods
with ANOVA-based analysis [16,17]. The Taguchi–Grey relational analysis [18,19] in par-
ticular offers a structured framework to handle multi-objective optimization problems
and has been effectively applied in EDM parameter optimization. However, in most
previous studies, these methods primarily relate input parameters such as voltage, cur-
rent, and pulse frequency directly to output metrics, without a deeper exploration of the
discharge dynamics.

Recent advances in on-machine process monitoring have enabled the segmentation
and classification of individual electrical events into types such as clean sparks, arcs,
and short circuits [20,21]. Discharge classification provides a richer, physically interpretable
view of the EDM process beyond conventional current and voltage waveform analysis.
While pulse-based breakout detection using discharge behavior has been explored, pri-
marily in wire EDM, where breakout is a critical event [22,23], such approaches are often
limited to sudden, extreme transitions. In contrast, die-sinking EDM under rotational
conditions induces more gradual and subtle changes, where the traditional feed rate or
voltage variations cause noticeable differences but the rotation rate variation affects the
internal discharge dynamics more subtly.

This highlights a critical research gap: the need to understand how the tool rotation rate
variation influences discharge patterns and machining stability in die-sinking EDM, where
differences are not easily captured by classical threshold-based models. Tungsten carbide,
particularly ultrafine-grained cobalt-bonded grades, is widely used in mold fabrication due
to its high hardness and thermal resistance, but it is also difficult to machine, making it a
particularly relevant material for this investigation [24].

We hypothesize that variation in tool rotation rate leads to measurable changes in dis-
charge event patterns and phase-dependent machining stability, which can be detected and
predicted using machine learning models trained on on-machine electrical measurements.
To test this hypothesis, we develop a multi-stage methodology that combines process
optimization, data-driven classification, and phase-aware analysis of electrical discharges.

First, Taguchi–Grey analysis is applied to optimize machining parameters excluding
rotation rate, establishing baseline process performance. Next, regression modeling with
process indicators is employed to refine the understanding of input–output relationships.
Machine learning classification models (Random Forest and XGBoost) are then developed
to predict machining stability based on both raw electrical signal features and classified
discharge-type features. Finally, dynamic discharge trends across varying rotation rates are
examined to uncover behaviors indicative of process instability, forming the foundation for
data-driven control strategies. The objective is not only to improve the prediction accuracy
but also to enhance physical interpretability by linking signal characteristics and discharge
phenomena to machining outcomes.

This study aims to advance a physically grounded understanding of the stability phe-
nomena in rotational EDM through the integration of traditional optimization techniques
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and modern machine learning. The findings support improved process stability and pro-
ductivity in the deep hole drilling of challenging mold materials such as tungsten carbide.

2. Methodology
2.1. Experimental Setup and Data Acquisition
2.1.1. Materials and Machining Configuration

Electric discharge machining (EDM) experiments were performed on ultrafine grain
cobalt-bonded tungsten carbide (KM10), produced by Toyo Tool, Osaka, Japan. The material
had an average grain size of 0.7 µm and a binder concentration of 8 %, with its mechanical
properties listed in Table 1. Copper electrodes with a diameter of 1 mm, supplied by Nilaco,
Tokyo, Japan, were used as tools. The experiments were conducted using the Mitsubishi
EA8PV die-sinking EDM machine.

Table 1. Material properties.

Material Hardness [HRA] Tensile Strength [GPa] Toughness [GPa]

WC-Co (KM10) 91.5 3.4 11.2

Tool rotation was controlled using a Nakanishi E2280 pneumatic air spindle, with the
rotational rate regulated via an Arduino Uno and ADC-based system. The dielectric fluid
used was Shell Paraol 250, equipped with a custom filtration system operating in two stages:
10 µm and 0.5 µm.

Waveform data were acquired using an Iwatsu SS-0130R voltage probe and an Iwatsu
SS-240A current probe, connected to a Picoscope 3403D MSO oscilloscope. A sampling inter-
val of 504 ns was used to capture short-duration pulses with high precision. The data were
recorded in binary format using Python wrappers from the PicoSDK library. A schematic
of the complete machining setup is shown in Figure 1.
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Acrylic Plate

Base Plate

V

A
Oscilloscope

Computer

Pump

ADC Spindle 
Controller
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Spindle

Tool

Current
Data
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Figure 1. Experimental setup.

2.1.2. Waveform Capture and Discharge Classification

To reduce the impact of electrical noise, both inductive and capacitive, a weighted
moving average filter was applied to voltage and current signals. The kernel used was
(0.05, 0.15, 0.6, 0.15, 0.05), which effectively smoothed high-frequency fluctuations while
preserving the underlying discharge shape.



J. Manuf. Mater. Process. 2025, 9, 187 4 of 26

The EDM system employed in this study features an always-on voltage and a pulsed
current profile. A switched-capacitor (SC) circuit was used, in which the current rises
gradually for each discharge. The discharge pulse duration was defined as the interval
during which the current exceeds 60% of its local peak, capturing the effective energy
delivery window.

Discharge events were flagged whenever this 60% threshold was crossed. For each
event, the start time, average voltage, average current, discharge duration, and inter-
discharge delay were computed. A schematic of the event detection methodology is shown
in Figure 2, and classification criteria are provided in Table 2.

In addition to the standard discharge categories established in previous studies [20,25],
two new classes are introduced: Unstable Sparks (USs) and Secondary Discharges (SDs).
These capture events with pulse-off durations shorter than the nominal off-time, a common
feature in circuits with continuously applied voltage and pulsed current. This categorization
was necessary, as a substantial proportion of discharges were found to occur under these
conditions as seen in Figure A1.

Time

Time

C
ur
re
nt

Vo
lta
ge

Open-circuit voltage (Vo) 0.9Vo

Local Maximum (I)

0.6 I

Pulse On Pulse Off

Ignition Delay

Figure 2. Discharge detection schematic.

Table 2. Key conditions for the classification of detected discharges.

Class Symbol Key Conditions

Short circuit SC V < 0.01Vo

Clean Sparks SP V > 0.01Vo; I > 0.75Ip; 0.9Ton ≥ T ≥ 1.1Ton;
Delay ≥ Toff

Transient Arcs TA V > 0.01Vo; 1.1Ton > T ≥ 1.4Ton
Arcs AR V > 0.01Vo; T > 1.4Ton

Unstable Spark US Same as SP but Delay < Toff
Partial Sparks PS Same as SP but I < 0.75Ip

Secondary Discharges SD All other discharges not matching the
above categories
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Where Vo, Ip, Ton, To f f refer to open circuit voltage, peak current, pulse on duration,
and pulse off duration, respectively.

2.2. Experimental Design And Optimization
2.2.1. Design Of Experiments

Two sets of experiments were conducted to evaluate the effect of tool rotation in
EDM. The first was a parameter optimization experiment to establish baseline machining
performance, followed by the micro through-hole drilling of tungsten carbide to investigate
the influence of different rotation rates. The optimization experiments were conducted
under lower settings of the transistor–resistor circuit, representing the semi-finish ma-
chining region with discharge energy [1–10 mJ]. Informed by the prior literature [24] and
manufacturer recommendations to reduce tool wear, short and frequent pulses with a
gradual power rise were applied. To ensure adequate resolution in waveform acquisition,
a minimum pulse duration of 4 µs (8 samples) was maintained. Subsequently, rotation
evaluation experiments were carried out by machining a tungsten carbide plate of thickness
1 mm and varying rotation rates from 1000 to 10,000 RPM. In addition to the standard
experiments under fixed rotation rates, two dynamic test cases were introduced to eval-
uate the model’s robustness under time-varying rotation rates. These test cases simulate
practical scenarios with varying rotation rates. They were excluded from training and used
solely for independent validation. The rotation rates for the two test cases are defined as

Test 1 = ⌊1000 + 6 × Time(s)⌋ RPM (1)

Test 2 = ⌊4000 + 4.45 × Time(s)⌋ RPM (2)

2.2.2. Taguchi–Grey Optimization

The Taguchi method was employed to determine optimal machining parameters
within defined experimental constraints. Five parameters—open circuit voltage (Vo), peak
discharge current (Ip), feed rate ( f ), pulse-on duration (Ton), and duty ratio (DR)—were
each evaluated at four levels using an L16 orthogonal array as shown in Table 3. Blind
holes of 200 µm were machined at a rotation rate of 2000 RPM.

Table 3. Orthogonal array for Taguchi–Grey optimization.

E.ID Voltage [V] Feed
Rate [µm/min]

Peak
Current [A] Pulse On [µs] Duty Ratio

1 80 60 1 4 0.2
2 80 120 1.5 8 0.3
3 80 180 2 16 0.4
4 80 240 2.5 32 0.5
5 110 60 1.5 16 0.5
6 110 120 1 32 0.4
7 110 180 2.5 4 0.3
8 110 240 2 8 0.2
9 150 60 2 32 0.3
10 150 120 2.5 16 0.2
11 150 180 1 8 0.5
12 150 240 1.5 4 0.4
13 220 60 2.5 8 0.4
14 220 120 2 4 0.5
15 220 180 1.5 32 0.2
16 220 240 1 16 0.3
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Performance evaluation was categorized into three domains: material removal
rate (MRR), surface roughness (Sa and Sz), and profile accuracy, specifically, machin-
ing depth (d) and diametric overcut (DOC). Each output metric had a distinct optimization
goal: maximizing MRR, minimizing surface roughness, and achieving dimensional accu-
racy in profile features. To address the multi-objective nature of the problem, the Grey
relational analysis (GRA) method was adopted. The procedure includes (1) the normal-
ization of data, (2) the computation of Grey relational coefficients (GRC), and (3) ranking
based on Grey relational grade (GRG). Based on the optimization objective, one of three
normalization formulas was used: smaller-the-better, larger-the-better, or nominal-the-
best (Equations (3)–(5)). The GRC was calculated using Equation (6), and the GRG using
Equation (7). The notation was simplified for clarity but remained consistent with standard
GRA formulations [26,27]:

ni(k) =
max xi(k) − xi(k)

max xi(k) − min xi (k)
(3)

ni(k) =
xi(k) − min xi(k)

max xi(k) − min xi (k)
(4)

ni(k) = 1 − xi(k)− obj(k)
max|xi(k)− obj(k)| (5)

where xi(k) are the values of output k for experiment ID i, and obj(k) is the goal value of
output k:

GRCi (k) =
∆min + ζ · ∆max

∆i(k) + ζ · ∆max
(6)

where ∆i(k) = |xi(k)− ni(k)| is the deviation of the sequence. The distinguishing coeffi-
cient ζ was set to 0.5, a commonly used value in the literature, ensuring moderate sensitivity
in the GRC calculation:

GRGi =
n

∑
k =1

βkGRCi(k) (7)

To balance machining objectives, the five responses were grouped into three categories:
machining efficiency (MRR), surface quality (Sa, Sz), and profile accuracy (d, DOC). Equal
weight was applied to each category when calculating the GRG, aligning with the study’s
goal of balanced optimization.

2.2.3. Regression-Based Parameter Analysis

The empirical relationships between input (X) parameter and output (Y) metrics
were further explored through regression modeling. Both linear regression (LR) and non-
linear ensemble models, Random Forest (RF) and Extreme Gradient Boosting (XGB), were
implemented using the scikit-learn Python library. For linear regression, which is sensitive
to multicollinearity, features with a variance inflation factor (VIF) greater than 5 were
iteratively removed. To enhance model performance, backward sequential feature selection
was employed to identify the most relevant variables. The objective was to retain the
maximum number of features while achieving high performance, defined by R2 > 0.85
and MAPE < 20%.

For the non-linear RF and XGB models (as described in [28]), which are inherently
robust to multicollinearity, no VIF filtering was applied. A train–test split ratio of 80:20 was
used, unless a predefined test set was available.

These regression models were not intended solely for high-accuracy prediction but
were used to evaluate the nature of relationships, linear or non-linear, between input
parameters and output metrics, and to identify key influencing variables. In cases where
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the regression models failed to meet the performance thresholds, a correlation analysis was
conducted. The Pearson correlation coefficient between two variables x and y is given by
Equation (8):

Corr(x, y) =
Cov(x, y)

σxσy
(8)

2.3. Labeling and Predictive Modeling
2.3.1. End-of-Machining (EOM) Detection

Following data preparation, we first developed a model to detect the End-of-
Machining (EOM) phase. This was essential to isolate the effective machining period
from the chaotic breakthrough or termination phases, which often introduce labeling noise.
The EOM phase is characterized by a decaying discharge signals: highly oscillatory wave-
forms with gradually diminishing amplitude as illustrated in Figure 3a. To detect this
transition, Fast Fourier Transform (FFT) was applied to the total discharge signal, lever-
aging the observation that EOM regions exhibit significantly lower energy in frequency
bands [0.08–0.12 Hz]. A preliminary manual annotation of the EOM onset was made via
visual inspection. This initial label was then used to train a Random Forest classifier on
features such as FFT band energy Figure 3b and the rolling mean of discharge count over a
25 s window Figure 3c.
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Figure 3. (a) Total discharges signal in the stable and EOM phases, (b) FFT energy in frequency bands
[0.08–0.12 Hz], and (c) rolling mean of discharge count over a 10 s window.

The trained model enabled the automatic detection and segmentation of machining
and EOM phases, ensuring that subsequent analysis focused only on the machining regime.
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2.3.2. Instability Labeling Strategy

Within the machining phase, the term instability may refer to undesirable conditions
such as frequent tool oscillations, inefficient material removal, short circuits, or erratic
discharge behavior. For effective machine learning-based classification, it is essential to
establish a consistent and physically meaningful definition of instability that remains valid
across varying rotation rates.

Based on exploratory analysis, two categories of instability were identified: (1) quanti-
tative instability, characterized by a significant deviation in the total number of discharges
from typical machining behavior, and (2) qualitative instability, involving compositional
shifts in discharge events, such as increased arcing or secondary discharges. This study
focuses on the former, quantitative instability hereafter referred to as “unstable machining”.

To define instability in a rotation-invariant manner, the total discharge count distribu-
tion was analyzed across all machining batches (1 s each). Batches falling below the 10th
percentile were labeled as under-machined, while those exceeding the 85th percentile were
labeled as over-machined as seen in Figure 4. These thresholds, selected through iterative
testing, ensured a balance between class coverage and label separability. The resulting
binary labels: unstable (under- or over-machined) and stable, served as the ground truth
for supervised learning.

To classify stable and unstable machining batches based on the defined labels, we used
two commonly applied tree-based ensemble learning algorithms: Random Forest (RF) [29,30]
and Extreme Gradient Boosting (XGBoost or XGB) [31]. RF builds multiple decision trees
using randomly sampled data and features, which helps improve robustness and reduce
overfitting. XGBoost, on the other hand, builds trees sequentially, with each tree aiming to
correct errors made by the previous ones. These models are often used for structured data
classification tasks and are known for their performance in practical applications such as
the detection of defects [32,33] or process monitoring in manufacturing [34].

In this study, we applied both models to predict machining stability at the batch level,
using features engineered from event statistics and signal-based indicators.

0 200 400 600 800 1000 1200
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10000

20000

30000

40000

50000

60000
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Unstable Machining Detection
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Figure 4. Total discharge counts and binary labels for under- and over-machined batches.

2.3.3. Supervised Classification

Two types of features were extracted for model training. The first set comprises raw
waveform derived features, including mean, standard deviation, maximum, and minimum
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values of voltage, current, discharge duration, inter-discharge delay, and gap, calculated
over 1 s batches.

The second set includes classified discharge features, such as the count of each dis-
charge type, 10 s rolling averages, and temporal derivatives. While percentage-based
features were initially explored, they were excluded to avoid data leakage, as they directly
depend on the total discharge count used for labeling.

In total, over 20 features were considered. To address the potential high dimensionality
and multicollinearity, an initial Random Forest model was used to evaluate feature impor-
tance. Features with low SHAP (SHapley Additive Explanations) scores and high variance
inflation (VIF > 10) were removed, and the top 15 features were selected. Additionally,
to address the issue to the class imbalance (unstable batches comprising 25%), the Synthetic
Minority Oversampling Technique (SMOTE) was applied during training.

The two classifiers, RF and XGBoost, were evaluated. Hyperparameter tuning was
performed using grid search. A conservative decision threshold of 0.4 was adopted to
prioritize recall over precision, given the application’s focus on detecting potentially unsta-
ble conditions where false negatives are more critical than false positives. The complete
machine learning workflow is outlined in Figure 5.

Data Random Forest #1 End of Machining
Detection

Instability LabelingRandom Forest #2

Feature Selections RF/XGB
Classification SHAP Analysis

Breakout Phase
Filtering

Unstable
Machining
Detection

Feature
Curation

FFT,
Mean

Filtering safe phase
Initial

Training

Full
Model

Top
Feature
Filtering VIF +

SHAP
Filtering

Model
Interpretation

Label and Model
Refinement

SMOTE

Figure 5. Workflow for instability detection and supervised classification.

The overall proposed framework to evaluate the effect of rotation rate is shown in
Figure 6.
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Figure 6. Proposed framework to evaluate the effect of rotation rate.

3. Results and Discussion
3.1. Parameter Optimization Using Taguchi–Grey and Regression Models

The summary of performance metrics and corresponding Grey relational grades (GRG)
for each experimental condition is shown in Table 4. Experiments 7 and 8 exhibited the
highest GRG values. Subsequent SEM-based surface inspections, as seen in Figure 7,
revealed minimal surface defects such as micro-cracks in these samples, validating the
selection. Experiment 7 was ultimately chosen for rotation rate evaluation experiments.
The table for data normalization and Grey relational coefficients is shown in Table A1.
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500 µm

(a) (b)

(c) (d)

50 µm

Figure 7. SEM of machined hole for experiments 7 (a,c) and 8 (b,d).

Table 4. Summary of results and Grey relational grades (GRG) for each parameter evaluation
experiment.

E.ID
Results

GRG RankMRR Sa Sz DOC d
[µm3/min] [µm] [µm] [µm] [µm]

1 18.74 0.88 15.14 23.59 184.43 0.47 13
2 32.23 1.21 22.35 26.49 197.49 0.62 6
3 66.56 1.82 23.73 30.68 225.31 0.62 5
4 71.84 3.25 39.30 38.17 269.97 0.54 9
5 49.23 1.94 24.89 33.83 276.93 0.47 12
6 24.25 3.07 32.78 33.41 235.20 0.43 15
7 79.90 1.34 20.25 21.37 221.17 0.84 1
8 35.86 0.75 12.78 19.32 192.09 0.74 2
9 26.76 4.42 37.70 40.34 184.15 0.44 14

10 24.00 2.46 30.28 25.98 192.25 0.54 10
11 48.99 1.61 21.95 28.62 189.27 0.60 7
12 63.41 1.45 21.82 25.58 214.76 0.67 3
13 37.43 1.86 26.58 25.83 220.97 0.54 8
14 58.89 1.57 24.94 22.55 227.19 0.64 4
15 16.07 3.38 36.51 27.53 209.60 0.49 11
16 17.21 2.41 26.08 31.76 154.30 0.43 16

Based on the methodologies described in Section 2.2.3, linear regression models were
evaluated using R2 and MAPE as shown in Table 5. Only MRR and Sa achieved the target
thresholds of R2 > 0.85 and MAPE < 20% and were considered suitable for interpretation.
The MRR showed strong dependence on peak current and pulse-on duration (Equation (9)).
For Sa, as seen in Equation (10), lower voltage, shorter pulse durations, and higher feed
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rates were found to be favorable for achieving better surface quality. These findings align
with prior studies on the semi-finish EDM of hard materials [35–37].

Table 5. Linear regression results for each target output.

Target R2 MAPE

MRR 0.861 15.970
Sa 0.948 12.355
Sz 0.496 18.384

Depth 0.172 11.635
Overcut 0.771 8.988

MRR = 6.471 + 1.717 Ip + 0.065 Ton + 0.062 DR (9)

Sa = −0.017 + 0.008 Ton + 0.011 Vp − 0.002 f (10)

3.2. Exploratory Modeling and Feature Selection for Bad Condition Labeling

To evaluate machining performance across different rotation rates, an evaluation study
was conducted, summarized in Table 6. Since the material removal rate for through-holes
is directly influenced by both top and bottom diameters, machining time (Mach.Time)
was considered as an independent metric. Additionally, as illustrated in Figure 8d,e, inlet
chipping was observed for some conditions, prompting the inclusion of roundness metrics
(Top Rou, Bot Rou). Three distinct temporal surfaces (B1, B2, B3) were observed in the
hole cross-sections (Figure 8b,e), and were therefore excluded from quantitative analysis.
Equal weights were assigned to the machining time, diameter, and roundness in the Grey
relational grade (GRG) computation.

500 µm

(a)

(d)

(b) (c)

(e) (f)

Chipping

B1

B2

B3

Figure 8. SEM of the top, cross-section and bottom surface of the machined hole for Experiment 7
(a–c) and Experiment 8 (d–f), respectively.

From the results, the best performance was observed at 1000 and 9000 RPM, which
emerged as potential optima. Normalized data and Grey relation coefficients for these
conditions are shown in Table A2.
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Table 6. Summary of machining metrics.

Rotation
Rate

Mach.
Time

Top
Dia. Bot Dia. Top

Rou.
Bot

Rou. GRG Rank
[RPM] [min] [µm] [µm] [µm] [µm]

1000 17.18 1075.38 946.09 23.57 3.92 0.76 1
2000 17.62 1106.06 945.98 26.26 5.81 0.63 5
3000 18.70 1107.25 939.29 22.17 5.92 0.55 7
4000 18.42 1112.93 968.52 23.93 18.84 0.53 8
5000 18.37 1071.83 950.82 3.37 10.88 0.68 3
6000 17.97 1123.92 953.23 22.82 3.71 0.64 4
7000 19.32 1116.01 960.14 25.97 11.72 0.50 10
8000 18.98 1120.61 971.63 26.59 14.28 0.52 9
9000 16.93 1126.05 978.17 19.34 17.17 0.75 2

10,000 19.10 1098.28 953.79 21.81 3.46 0.60 6

To explore empirical modeling, linear and non-linear regression models were applied
using the rotation rate as a sole input variable as seen in Table 7. However, most models
yielded negative R2 scores, indicating they performed worse than simple mean-based
prediction. This suggests either insufficient data points or a non-monotonic (i.e., non-
consistently increasing or decreasing) relationship between rotation rate and output metrics.
We then explored whether including on-machine measurements could improve model
performance by incorporating two feature sets: Z1 (raw electrical signals) and Z2 (discharge
classifications), as described in Section 2.1.2.

Despite these enhancements, regression models (especially linear ones) still performed
poorly. For example, the linear model trained on raw signal features produced an implausi-
bly negative R2 (e.g., −748 for bottom roundness), indicating poor model generalization
and potential issues with input scaling or multicollinearity. While ensemble models (e.g.,
Random Forests) achieved marginal improvements (e.g., R2 = 0.69 for machining time), the
overall prediction remained weak.

Table 7. Model R2 scores for different feature sets.

Output R2 Rotation R2 Signal Features R2 Classified Features

LinReg RF XGB LinReg RF XGB LinReg RF XGB

Mac. Time −20.20 −18.27 −17.99 −58.28 0.69 −0.67 −4.08 0.10 −0.22
Top Dia. −0.63 −1.81 −3.86 −9.00 0.28 −0.14 −713.80 −0.22 0.00
Bot Dia. 0.46 0.72 0.92 −177.40 −0.62 −0.15 −3141.73 −0.74 −0.78
Top Rou. −0.83 −0.99 −1.50 −35.22 0.01 −0.43 −1080.21 −0.46 −1.77
Bot Rou. −0.08 0.47 0.82 −748.46 −0.46 −0.83 −17641.0 −1.33 −2.25

Due to these limitations, the focus shifted from regression modeling to correlation-
based analysis. Pearson correlation coefficients were computed both between input features
and output metrics (Z − Y), and among input features themselves (Z − Z), along with the
rotation rate [RR] for classified data as visualized in Figure 9. A correlation threshold of
|r| ≥ 0.6 was used to denote strong associations.
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Figure 9. Pearson correlation coefficient heatmap for (a) input features vs. output metrics and
(b) within input features for classified features.

The findings revealed several key relationships between discharge types and machin-
ing outcomes. An increase in weak partial sparks and transient arcs was significantly corre-
lated with longer machining times, suggesting inefficiencies in energy transfer. A higher
count of secondary discharges, likely resulting from poor flushing, was associated with
enlarged top and bottom diameters, leading to pronounced overcuts. In contrast, clean
sparks consistently aligned with improved machining efficiency and reduced top and
bottom diameters thereby reducing overcuts, reaffirming their role as desirable discharges.

Interestingly, short circuits also showed negative correlation with overcut (top and
bottom diameters). This counterintuitive trend is interpreted as a secondary effect arising
from increased clean spark frequency and the suppression of secondary discharges. Despite
these insights, extensive multicollinearity among the features substantially weakened the
explanatory power of regression-based models.

An important physical insight emerged: increasing the rotation rate tends to raise
the frequency of partial sparks and secondary discharges, likely due to increased fluid
shear disrupting discharge channels. At the same time, increasing rotation helps break
down short circuits more rapidly. In summary, the increased rotation rate increases chaos
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or entropy within the discharge gap as seen in Figure 9b. These inferences were further
supported by correlations derived from raw signal features (Figure A2).

These results underscore the value of time-resolved discharge pattern analysis over
aggregate statistics when evaluating the influence of rotation. To reduce feature dimension-
ality and address multicollinearity among discharge categories, we propose condensing
discharge types into two interpretable classification schemes: one based on the discharge
timing (henceforth on discharge timing)-derived features (Table 8) and the other based on
the impact of the discharge event (Table 9).

Table 8. Class 1: based on discharge timing-derived features.

Category Constituents Description

D1 SC Non-machining discharges with variable duration

D2 AR, TA Long-duration discharges; typically indicate overcut or
high energy

D3 US, SD Short-duration discharges with minimal
inter-discharge delay

D4 SP, PS Sparks with optimal duration and delay, may vary
in energy

Table 9. Class 2: based on impact of the discharge event.

Category Constituents Description

E1 SC Dominant failure mode; produces minimal or no
material removal

E2 AR, SD High energy or erratic discharges; increase tool wear or
cause interruptions

E3 TA, PS, US Spark-like discharges with sub-optimal energy, duration or
delay characteristics

E4 SP Clean sparks; primary contributors to efficient and stable
material removal

This categorization is used in the next stage of our machine learning framework to
reduce feature complexity while preserving physical interpretability.

3.3. Supervised Classification Using Machine Learning

The End-of-Machining (EOM) detection model achieved an overall accuracy of 98%,
with a precision of 0.85 and recall of 0.89 for detecting the EOM class. The confusion
matrix in Table 10 shows that only 22 batches were misclassified as EOM before the
actual onset, while the majority of false positives occurred after the true EOM point as
seen in Figure 10 (Predicted EOM Phase), indicating the model’s conservative behavior.
To avoid premature deactivation in a proposed dynamic control system, a post-EOM
misclassification tolerance of 10 batches was adopted. While early false positives could
impact control decisions, post-EOM misclassifications are acceptable since control would
already be disengaged after detection. This conservative buffer ensures safe and robust
labeling in anticipation of future deployment.

Table 10. Confusion matrix results for EOM detection.

Predicted: Not EOM Predicted: EOM

Actual: Not EOM 2254 32
Actual: EOM 22 176
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Figure 10. Candidates and predicted true end-of-machining batches.

The model metrics and global temporal characteristics for the machine learning models
in the segmented machining zone are summarized in Table 11 and Figure 11, respectively.

Table 11. Performance metrics for different feature types and classifiers.

Metric Raw Features Class 1 Features Class 2 Features

RF XGB RF XGB RF XGB

Precision 0.694 0.729 0.816 0.760 0.710 0.696
Recall 0.907 0.858 0.448 0.544 0.885 0.907
F1-score 0.787 0.788 0.578 0.634 0.788 0.788
Accuracy 0.877 0.885 0.836 0.843 0.881 0.878

In general, the Extreme Gradient Boosting (XGB) classifier outperformed the Random
Forest (RF) classifier in terms of both accuracy, the proportion of correctly predicted batches,
and F1-score, which balances precision and recall, making it particularly useful under class
imbalance. As shown in Figure 11a, most models achieved high confidence levels (ROC-
AUC > 0.9), indicating that small changes in the probability threshold are unlikely to
significantly affect classification outcomes.

Additional insights are drawn from the confusion matrices in Figure 11b–d and
the batch-level prediction overlays in Figure 12a–c. The model trained on raw electrical
signal features exhibits a more sensitive prediction behavior, flagging a larger number
of unstable batches, including those with subtle variations in discharge characteristics.
This is particularly evident during the early machining periods (Figure 12a). In contrast,
models based on discharge timing or impact features (Class 1) produce more conservative
predictions, mainly identifying the most severe instances of instability but fail to capture
sustained over-machining. Meanwhile, the model using discharge impact based features
(Class 2) offers a more balanced prediction across different instability patterns.

This comparison highlights a key trade-off. Raw signal-based models are highly
sensitive and computationally efficient due to minimal preprocessing but are also more
prone to noise and false positives. Classification-based models, built on features like
discharge timing or impact, offer greater physical interpretability and targeted detec-
tion, albeit with increased computational effort. For real-time monitoring, the RF model
with raw features may be better suited for early anomaly detection. However, for cor-
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rective interventions, the discharge classification-based models provide more robust and
interpretable predictions.
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Figure 11. (a) AUC-ROC for different feature types and classifiers at probability threshold = 0.4.
(b–d) Confusion matrix for different feature types and classification models.

Given that this study aims to enable adaptive control of tool rotation, the model based
on discharge impact features (Class 2) is recommended. While it achieves only moderate ac-
curacy, its consistently high recall ensures the dependable detection of potentially unstable
conditions, critical for preventive control, even if it occasionally sacrifices precision.

Additionally, we analyzed the model’s prediction methodology by examining the
SHAP values of the five most important features as shown in Figure 13. In the plot, the
dot color represents the actual feature value, while the SHAP value indicates the (unitless)
magnitude and direction of that feature’s contribution toward predicting instability. In this
study, both under-machining and over-machining conditions were collectively labeled as
unstable machining. This broad classification can introduce non-monotonic behavior in the
relationships between features and predicted outcomes.

Such non-monotonicity was evident in the top raw signal feature, gap mean
(Figure 13a), where both low values could correspond to either stable or unstable con-
ditions depending on contextual factors. In contrast, stable machining zones were generally
associated with higher current levels. The short delay pulses (D3), despite exhibiting the
high feature importance, likely due to its dominance in discharge counts (Figure A1), did
not show a strong association with stable machining, as seen in Figure 13, also demonstrat-
ing a non-monotonic trend. Meanwhile, category E3, comprising ‘almost spark’ discharges
such as Transient Arcs (TAs), Partial Sparks (PSs), and Unstable Sparks (USs), showed
a consistently strong association with stable machining, as seen in Figure 13b,c. These
observations underscore the importance of discharge type grouping in determining model
interpretability and efficiency, and also highlight the potential multicollinearity between
discharge categories.
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Figure 12. Predicted unstable batches from the best-performing models using (a) raw signal, (b) dis-
charge timing, and (c) discharge impact features. Horizontal lines indicate predefined unstable zones:
blue for under-machining (<10th percentile) and red for over-machining (>85th percentile) based on
total event count, used to compare model performance.
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(a) SHAP Summary Plot for XGB - Raw

(b) SHAP Summary Plot for XGB - Class 1

(c) SHAP Summary Plot for XGB - Class 2

Figure 13. SHAP summary plot for 5 most important features for XGB models on (a) raw signal
features, (b) discharge timing features, and (c) discharge impact features.

Moreover, while the correlation analysis shows only a weak positive relationship
between short circuits and sparks in Figure 9b, the SHAP summary from the classification
model reveals a strong opposing effect; stable machining is associated with a higher
occurrence of sparks and a lower presence of short circuits (D1, E1 and D4, E4).

Overall, although clear monotonic trends were not consistently observed, the SHAP
analysis provided valuable insights into the model’s internal decision making and the
relative importance of individual features in identifying machining instability.
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3.4. Correction Strategy Exploration

Based on the prediction model derived above, unstable machining zones were re-
predicted for different tool rotation rates. Figure 14a shows the aggregate count of dis-
charges for each spark type in stable and unstable machining phases. It was observed that
during instability, there was a significant drop in the total number of discharges. How-
ever, there was a noticeable increase in secondary discharges, which are likely responsible
for over-machining.

To better understand the role of rotation, the counts of different spark types for
each rotation rate were normalized with respect to the 1000 RPM baseline. As shown in
Figure 14c,d, transient arcs and arcs remain relatively constant (within 10% variation) across
all rotation rates, indicating that long duration discharges are not significantly influenced
by rotation. Two key observations emerged: First, increasing rotation rate was found to
reduce short circuits by up to 40% during stable machining, while it remained unchanged
during unstable machining. Contrarily, while clean spark counts decreased significantly
during instability at higher rotation rates (more than 45%), they remained unaffected
during stable phases. Furthermore, secondary discharges increased at higher rotation rates
under both stable and unstable conditions, likely due to fluid shear that disrupted the
discharge channels.

These contrasting behaviors help reconcile the earlier discrepancy between correlation
and SHAP-based analysis: while short circuits and sparks showed a weak positive correla-
tion overall, their opposing trends across stable and unstable phases at different rotation
rates led to compensating effects in the aggregate data.

From these findings, we infer that during stable machining, increasing the rotation
rate can suppress short circuits, whereas during unstable machining, a higher rotation rate
may transform effective clean sparks into secondary discharges.

This insight forms the basis for a dynamic rotation control strategy: increase rotation
rate during stable phases to improve flushing efficiency, and decrease it upon detecting
instability to preserve spark effectiveness. Moreover, Figure 14b reveals that temporal
evolution of instability occurs across all rotation rates, suggesting time-dependent patterns
in machining behavior. Such trends are difficult to capture using static models like Random
Forests and XGBoost. Future work could employ sequence-based models, such as recurrent
neural networks (RNNs), to learn and predict these evolving patterns, potentially enabling
earlier and more adaptive control.

Violin plots in Figure 15 show that higher rotation rates are associated with longer
tailed distributions in both stable and unstable phase durations. This suggests that once
a particular phase is established at a higher rotation rate, it tends to persist for a longer
duration. In contrast, lower rotation rates exhibit more compact distributions, indicative of
shorter lived phases. This observation highlights the potential of rotation rate as a means
to modulate machining phase stability.

Based on these two analyses, we propose a simple framework for real-time control.
During machining, if stable conditions persist, increase the rotation incrementally every
4 s (the median duration of stable phases). If instability persists beyond 2 s, decrease the
rotation rate sharply to achieve a more stable machining condition.

However, this study also recognizes certain limitations. The proposed control strategy
is based on a limited number of observed rotation transitions and should be regarded as
preliminary. Moreover, the predictive modeling employed in this work operates on a batch
size of 1 s, which is comparable to the proposed control adjustment timescale of 2 s. This
temporal proximity may limit the responsiveness of the current model in capturing finer
grained transitions. To overcome this, future investigations should explore time-sequence
modeling approaches, such as recurrent neural networks (RNNs), which can identify
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evolving patterns at subsecond resolutions. These models may enable the earlier detection
of instability onset and better accommodate time delays introduced by data acquisition,
feature computation, prediction, and spindle actuation delays. Additionally, since this
study focused exclusively on ultrafine-grained tungsten carbide, the applicability of the
proposed models and control strategies to other electrode or workpiece materials remains
to be validated.
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Figure 14. (a) Count of discharges for each spark type in stable and unstable machining phases.
(b) Cumulative counts of rotation rate unstable at each time step, (c,d) normalized count of discharges
for each spark type in stable and unstable machining phases at different rotation rates.
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Figure 15. Violin plots of stable and unstable phase durations at different rotation rates.

4. Conclusions
This study developed a multi-level framework to evaluate the effect of tool rotation

in electric discharge machining (EDM) of tungsten carbide. Parameter optimization, tool
rotation effect clarification, machining stability prediction, and feature importance analysis
were performed. Additionally, a feedback informed framework for adaptive control was
explored. The key findings are summarized as follows:

1. Taguchi–Grey relational analysis successfully identified optimal parameter combinations
for EDM in the semi-finish machining region with discharge energy [1–10 mJ]. Regression
models validated strong relationships between electrical parameters and machining
performance for material removal rate and surface roughness. However, regression
approaches failed to capture the complex (non-monotonic) effects of tool rotation rates
on machining outcomes, motivating the shift toward feature based classification.

2. Three types of features: raw waveform, discharge timing based, and discharge impact
based were used to train Random Forest and XGBoost classifiers. The best-performing
model (RF on raw features) achieved 88.5% accuracy and over 90% recall. While raw
features offered high sensitivity, discharge impact-based classification yielded better
interpretability through SHAP analysis, despite the non-monotonic trends driven by
the unified labeling of under- and over-machining as instability.

3. SHAP analysis revealed that the relationship between short circuits and sparks is context-
dependent. Although the global correlation matrix showed weak association, phase-
specific analysis and SHAP plots highlighted their opposing roles in stability. This dual
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layer interpretation illustrates the strength of our framework in both predictive accuracy
(downstream) and explaining aggregate trends through localized behavior (upstream).

4. Tool rotation significantly influenced the discharge behavior. During stable machining,
increasing the rotation rate from 1000 to 9000 RPM reduced short circuits by over 40%,
while clean sparks remained consistent. However, under unstable conditions, higher
rotation diminished spark counts and increased secondary discharges, indicating a
shift in process dynamics.

5. Higher rotation rates also resulted in longer stable and unstable phase durations (e.g.,
maximum stable phase duration increased from 38 s at 1000 RPM to 264 s at 9000 RPM).
Based on these temporal dynamics, a control strategy was proposed: incrementally
increase rotation every 4 s during extended stability, and reduce it within 2 s of
instability detection, to extend productive phases and suppress deterioration.

The proposed framework is particularly applicable to deep hole EDM for glass mold-
ing dies, where improved surface integrity, dimensional consistency, and reduced electrode
wear are essential. By dynamically controlling the tool rotation based on real-time discharge
monitoring, this methodology supports the fabrication of cleaner, deeper holes in tungsten
carbide, enhancing mold quality and service life.
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Figure A2. Pearson correlation coefficient heatmap for (a) input features vs. output metrics and
(b) within input features for raw electrical features.

Table A1. Summary of normalized values and Grey relational coefficients (GRCs) for each parameter
evaluation experiment.

E.ID
Normalized Results Grey Relational Coefficients

MRR Sa Sz DOC d MRR Sa Sz DOC d

1 0.04 0.96 0.91 0.80 0.80 0.34 0.93 0.85 0.71 0.76
2 0.25 0.87 0.64 0.66 0.97 0.40 0.80 0.58 0.59 1.00
3 0.79 0.71 0.59 0.46 0.67 0.71 0.63 0.55 0.48 0.64
4 0.87 0.32 0.00 0.10 0.09 0.80 0.42 0.33 0.36 0.38
5 0.52 0.67 0.54 0.31 0.00 0.51 0.61 0.52 0.42 0.36
6 0.13 0.37 0.25 0.33 0.54 0.36 0.44 0.40 0.43 0.56
7 1.00 0.84 0.72 0.90 0.72 1.00 0.75 0.64 0.84 0.69
8 0.31 1.00 1.00 1.00 0.90 0.42 1.00 1.00 1.00 0.88
9 0.17 0.00 0.06 0.00 0.79 0.38 0.33 0.35 0.33 0.75
10 0.12 0.53 0.34 0.68 0.90 0.36 0.52 0.43 0.61 0.89
11 0.52 0.76 0.65 0.56 0.86 0.51 0.68 0.59 0.53 0.83
12 0.74 0.81 0.66 0.70 0.81 0.66 0.72 0.59 0.63 0.77
13 0.33 0.70 0.48 0.69 0.73 0.43 0.62 0.49 0.62 0.69
14 0.67 0.77 0.54 0.85 0.65 0.60 0.69 0.52 0.76 0.62
15 0.00 0.28 0.11 0.61 0.88 0.33 0.41 0.36 0.56 0.85
16 0.02 0.55 0.50 0.41 0.41 0.34 0.52 0.50 0.46 0.49
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Table A2. Summary of normalized values and Grey relational coefficients (GRCs) for each parameter
evaluation experiment.

E.ID
Normalized Results Grey Relational Coefficients

Mach.
Time

Top
Dia

Bot
Dia

Top
Rou.

Bot
Rou.

Mach.
Time

Top
Dia

Bot
Dia

Top
Rou.

Bot
Rou.

1 0.42 0.93 0.18 0.13 0.97 0.46 0.88 0.38 0.36 0.94
2 0.45 0.37 0.17 0.01 0.85 0.48 0.44 0.38 0.34 0.77
3 0.09 0.35 0.00 0.19 0.84 0.35 0.43 0.33 0.38 0.76
4 0.36 0.24 0.75 0.11 0.00 0.44 0.40 0.67 0.36 0.33
5 0.05 1.00 0.30 1.00 0.52 0.35 1.00 0.42 1.00 0.51
6 0.48 0.04 0.36 0.16 0.98 0.49 0.34 0.44 0.37 0.97
7 0.07 0.19 0.54 0.03 0.46 0.35 0.38 0.52 0.34 0.48
8 0.25 0.10 0.83 0.00 0.30 0.40 0.36 0.75 0.33 0.42
9 1.00 0.00 1.00 0.31 0.11 1.00 0.33 1.00 0.42 0.36
10 0.00 0.51 0.37 0.21 1.00 0.33 0.51 0.44 0.39 1.00
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