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Abstract
Polycrystalline materials are extensively employed in industry. Its surface roughness
significantly affects the working performance. Material defects, particularly grain boundaries,
have a great impact on the achieved surface roughness of polycrystalline materials. However, it
is difficult to establish a purely theoretical model for surface roughness with consideration of
the grain boundary effect using conventional analytical methods. In this work, a theoretical and
deep learning hybrid model for predicting the surface roughness of diamond-turned
polycrystalline materials is proposed. The kinematic–dynamic roughness component in relation
to the tool profile duplication effect, work material plastic side flow, relative vibration between
the diamond tool and workpiece, etc, is theoretically calculated. The material-defect roughness
component is modeled with a cascade forward neural network. In the neural network, the ratio
of maximum undeformed chip thickness to cutting edge radius RTS, work material properties
(misorientation angle θg and grain size dg), and spindle rotation speed ns are configured as input
variables. The material-defect roughness component is set as the output variable. To validate the
developed model, polycrystalline copper with a gradient distribution of grains prepared by
friction stir processing is machined with various processing parameters and different diamond
tools. Compared with the previously developed model, obvious improvement in the prediction
accuracy is observed with this hybrid prediction model. Based on this model, the influences of
different factors on the surface roughness of polycrystalline materials are discussed. The
influencing mechanism of the misorientation angle and grain size is quantitatively analyzed.
Two fracture modes, including transcrystalline and intercrystalline fractures at different RTS
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values, are observed. Meanwhile, optimal processing parameters are obtained with a simulated
annealing algorithm. Cutting experiments are performed with the optimal parameters, and a flat
surface finish with Sa 1.314 nm is finally achieved. The developed model and corresponding
new findings in this work are beneficial for accurately predicting the surface roughness of
polycrystalline materials and understanding the impacting mechanism of material defects in
diamond turning.

Keywords: diamond turning, material-defect roughness component, polycrystalline copper,
neural network, simulated annealing algorithm

Nomenclature

Ak Amplitude of the kth harmonic (nm)
Bh Threshold matrix in the hidden layer
E Young’s modulus of work material (GPa)
H Hardness of work material (GPa)
K Strength coefficient
Rak Linear average surface roughness along feed

direction (nm)
RTS Ratio of maximum undeformed chip thickness

to cutting edge radius
S(x) Kinematic surface profile (nm)
S1(x) Duplication profile of the diamond tool (nm)
S2(x) Surface profile in relation to plastic side flow

and spring back (nm)
∆Sa Difference in the surface roughness values of

two parameters (nm)
SaKD Kinematic–dynamic roughness component (nm)
SaMD Material-defect roughness component (nm)
Wh1 Weight matrix in the hidden layer
Xh Hidden layer matrix
bD Nominal contact length (nm)
c Minimum undeformed chip thickness

coefficient
dg Average grain size (µm)
f Feed rate per revolution (µm r−1)
fk Vibration frequency of the kth harmonic (Hz)
hDmin Minimum undeformed chip thickness (nm)
kd Size coefficient, kd = 0.001
kf Feed rate correction coefficient
kt Tool nose correction coefficient
kσ Linear coefficient for contact stress
ms Mean value of the surface profile (nm)
nw Work hardening exponent
ns Spindle rotation speed (rpm)
nm Number of feed rate per revolution from point A

to point Bm

nM Number of feed rate per revolution from point A
to point BM

rafm Probe tip radius of atomic force microscopy
rm Radius of least square circle of the measured

sectional profile
rn Diamond tool cutting edge radius (nm)
rε Tool nose radius (mm)
s Material spring back (nm)
tm The time that diamond tool tip arrives at point

Bm (s)
tM The time that diamond tool tip arrives at point

BM (s)
w Value of plastic side flow (nm)

zm Height coordinate induced by the diamond tool
at the point Bm (nm)

zM Height coordinate induced by the diamond tool
at the point BM (nm)

zv Relative vibration between diamond tool and
workpiece (nm)

δ A randomly generated number that varies in
[0, 1]

ε True strain of the work material
εo Offset length of the diamond tool tip (nm)
εp Plastic strain
εr Relative prediction error
εy Yield strain (MPa)
θ Angular coordinate (◦)
θg Misorientation angle of work material (◦)
ρm Equivalent coordinate of point A in terms of

point Bm (nm)
ρM Equivalent coordinate of point A in terms of

point BM (nm)
σ Contact stress between diamond tool and work

material (MPa)
φk Initial phase of the kth harmonic (◦)

1. Introduction

Single point diamond turning (SPDT) technology plays an
important role in the field of advanced manufacturing, e.g.
high-accuracy optics, renewable energy instruments, and
aerospace technology [1]. Polycrystallinematerials are extens-
ively employed in SPDT, and their surface roughness has a
great impact on the service performance [2]. For instance, the
scattering effect is usually observed if the surface roughness
of a diamond-turned component is larger than a critical value,
which further affects the optical performance [3]. Hence, it is
important to develop an accurate surface roughness prediction
and optimization model to acquire the best surface finish.

Researchers have performed many excellent studies on
surface roughness modeling. For instance, Liu and Melkote
presented a model for predicting the surface roughness in
the microturning of Al5083-H116 alloy that considered the
effects of the plastic side flow, tool geometry, and process
parameters [4]. They discovered that the work material side
flow in relation to the strain gradient-induced strengthening
effect is responsible for the rise in roughness at a low feed rate.
Wang et al proposed an improved surface roughness prediction
model considering the minimum undeformed chip thickness,
material plastic side flow and precipitation effect [5]. They
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claimed that by considering the precipitation effect of Al6061,
the prediction accuracy was remarkably improved by 26%.
Zong et al considered the tool nose radius, minimum unde-
formed chip thickness, material spring back, material plasti-
city, etc, and developed a roughness prediction model [6]. A
conservation law of the surface roughness model in the dia-
mond turning process was therefore discovered. Yang et al
created a three-dimensional finite element model for diamond
turning of spherical surfaces [7]. Surface roughness is obtained
by calculating the coordinates of the nodes on the topmost
machined surface. Furthermore, Zhang et al performed a sys-
tematic investigation of tool-tip vibration in diamond turning
[8]. Its influence on surface roughness generation was ana-
lyzed in detail and verified by cutting experiments.

As outlined above, great efforts have been made in the
development of roughness models. However, when applying
these models to predict the surface roughness of the polycrys-
talline materials of a diamond-turned component, prediction
errors were always observed [9, 10]. Researchers examined the
diamond-turned surface and discovered that the work mater-
ial grain boundary (GB) had a substantial impact on the pre-
diction error, which was closely related to the anisotropy of
the work material properties in the polycrystalline material
[11, 12]. Regarding this issue, Eda et al performed diamond
turning experiments on a polycrystalline copper [13]. Based
on the experimental results, they reported that step struc-
tures were observed on the grain boundaries, which were
determined by the elastic modulus and grain crystallographic
orientation. Moriwaki et al experimentally studied the mach-
inability of polycrystalline copper with a single crystal dia-
mond tool [14]. They pointed out that with a large maximum
undeformed chip thickness hDmax, the phenomenon of a step
structure at grain boundaries (SSGB) was rather obvious on
the diamond-turned surface. Brinksmeier et al experiment-
ally investigated the height of the SSGB in diamond turning
of pure copper [15]. They reported that the height of SSGB
machined at 2000 m min−1 was smaller than that machined
at 100 m min−1, which implied that the cutting speed may
affect the height of SSGB. Wang et al established a finite
element model of orthogonal cutting of polycrystalline cop-
per. A strong anisotropic machining characteristic, in terms of
the machined SSGB, was successfully captured in the simu-
lation of grain-by-grain cutting across a high-angle GB [16].
Tauhiduzzaman et al systematically investigated the effects
of grain size and GB on surface generation during diamond
turning [17]. They claimed that the GB roughness compon-
ent was effectively eliminated by a severe strain hardening
process.

In addition to the step structure, a protrusion structure was
observed on the GB when diamond turned the alloy materials.
For instance, Ding and Rahman studied the cutting mechan-
ism of the polycrystalline aluminum alloy Al 6061 T6 using a
single crystalline diamond microtool [18]. They claimed that
the surface finish of aluminum is significantly influenced by
the protrusion structure on the GB. He et al proposed a theor-
etical model to explain the structure patterns on the GB [19].
For alloy materials such as aluminum alloy Al6061, some
strengthening elements are added into the material matrix to

improve its mechanical properties. Because these strengthen-
ing elements are easily concentrated on the grain boundaries,
Young’s modulus on the GB area is larger than that on the
interior area of the material grain. The high value of Young’s
modulus of the GB ultimately leads to the protrusion struc-
ture at the grain boundaries (PSGB). In contrast, for pure metal
materials such as pure copper, no additional strengthening ele-
ments are added and concentrated on the GB. On this occasion,
the impact of Young’s modulus on the adjacent material grains
plays the leading role, which further results in the SSGB [20].

Based on the aforementioned findings, researchers have
noted that SSGB and PSGB on a diamond-turned surface have
emerged as the primary barrier preventing the accomplish-
ment of a superior surface finish [21]. However, in the cur-
rent roughness prediction model, the influence of the GB is
not comprehensively considered. In fact, SSGB/PSGB on a
diamond-turned surface is affected by various factors, e.g. the
maximum undeformed chip thickness, tool nose radius, cut-
ting speed, grain size, etc [22]. Furthermore, due to the natural
random distribution of the grain size and the crystallographic
orientation, the height and shape of SSGB/PSGB vary for dif-
ferent material grains [23]. For instance, He et al developed
an analytical model for PSGB on an aluminum alloy surface
[19]. However, this model can only be applied for grain bound-
aries that have a rectangular or elliptical shape, which fails
to account for the arbitrary nature of the GB shape. Crystal
plasticity finite element (CPFE) simulation is another popular
solution for modeling the GB effect in diamond turning. Wang
et al successfully utilized the CPFE simulation to examine the
influence of the misorientation angle and diamond tool sharp-
ness with a bicrystal copper model [24]. However, this method
can only obtain the simulation results on a limited number of
material grains and misorientation angles. Hence, it is difficult
to integrate SSGB/PSGB into a surface roughness prediction
model with the current methods.

Recently, deep learning methods have been successively
applied in manufacturing processes and material analysis,
which show great potential in solving difficult-to-model prob-
lems with conventional methods. For instance, the real tem-
perature distribution in the forming zone during electric-
ally assisted double-sided incremental forming cannot be
immediately measured. To estimate the forming temperat-
ure, Jiang et al suggested an artificial neural network frame-
work using the surrounding temperature and toolpath data,
which supplied crucial support for selecting optimum pro-
cessing parameters [25]. The most popular method for extract-
ing spatially resolved microstructural data from polycrystal-
line materials is electron backscattered diffraction (EBSD).
Shen et al developed two convolutional neural network meth-
ods for the purpose of reconstructing crystal orientations from
electron backscatter diffraction patterns [26]. Dai et al sugges-
ted combining an artificial neural network model with a visco-
plastic self-consistent model based on physics to properly anti-
cipate the material response of polycrystalline copper under
complicated loading situations [27]. Thismodel can accurately
depict the highly nonlinear deformation behavior of pure cop-
per under various processing settings, which is in line with the
findings of the experiments. Sizemore et al investigated the
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association between processing parameters and surface rough-
ness for polycrystalline copper/monocrystalline germanium
using an artificial neural network [28]. For these two mater-
ials, there was a noticeable increase in the forecast accuracy
of surface roughness compared to the traditional analytical
models, demonstrating the applicability of artificial neural net-
works in the prediction of surface roughness. The dynamics
of machining operations are still not fully understood because
of the complexity of the machine tool structure and the cut-
ting process. To predict the surface roughness during turning
operations, Jiao et al created a fuzzy adaptive network, which
demonstrated a substantial capacity for learning under chal-
lenging turning circumstances [29].

Deep learningmethods have achieved great success in solv-
ing problems that are usually difficult with conventional meth-
ods. Therefore, to accurately predict the surface roughness
considering the impact of SSGB/PSGB, we propose a the-
oretical and deep learning hybrid model. In this model, the
kinematic–dynamic roughness components in relation to dia-
mond tool duplication, material plastic side flow/spring back,
etc, are calculated with a conventional analytical method. In
addition, the material-defect roughness component, including
SSGB/PSGB, is modeled by a cascade forwards neural net-
work. With this hybrid model, the surface roughness model
of the diamond-turned polycrystalline material is developed.
A case study using pure copper as the work material was per-
formed to test the prediction accuracy. Based on this developed
model, we studied the influencing factors on the material-
defect roughness component in detail. Moreover, optimal pro-
cessing parameters are obtained with a simulated annealing
algorithm (SAA). The findings in this study are useful for
quantitatively understanding the influence of the SSGB on the
surface roughness of diamond-turned components and obtain-
ing a better surface finish.

2. Roughness model

2.1. Kinematic–dynamic roughness component

According to the findings of a prior research [9], the surface
roughness of polycrystalline materials in diamond turning is
influenced by four different types of components, including
kinematic, dynamic, work material defect, and ambient con-
ditions. The work material’s plastic side flow, spring back,
and tool profile duplication all have an impact on the kin-
ematic roughness component. The relative vibration between
the workpiece surface and the diamond tool has an impact on
the dynamic roughness component. The roughness caused by
imperfections in the work material matrix is referred to as the
work material-defect roughness component. The work mater-
ial’s GB has the most impact on the material-defect rough-
ness component. For instance, pure metal materials (e.g. pure
copper) are free of hard inclusions due to the absence of
strengthening elements. Therefore, SSGB/PSGB is the leading
source of material-defect component. Meanwhile, for metal
alloy materials, such as Al 6061, the hard inclusion inside
the matrix of the material also affects the surface finish that

f f

Kinematic-dynamic
roughness component  

Material-defect
roughness component 

Y

X
O

y=S(x)

f/2−f/2

(a) (b)

Figure 1. Definition of roughness component and coordinate.
(a) Radial section diagram of the kinematic–dynamic roughness
component and material-defect roughness component for a diamond
turned polycrystalline material; (b) coordinate setup of the
kinematic component.

is attained. The working temperature variation, outside vibra-
tion, etc, are included in the ambient condition roughness com-
ponent. In this work, the ultraprecision machine tool is placed
in a clean roomwith vibration isolation and a constant temper-
ature environment. Thus, the influence of the ambient condi-
tion factor can be neglected in this surface roughness model.

As depicted in figure 1(a), the pure blue profile represents
the kinematic–dynamic roughness component, which is cal-
culated with an analytical model in this work. In the circled
area, a rise in the blue area on the GB on the machined sur-
face occurs, which results in a work material defect rough-
ness component. According to the previous investigation result
[19], the achieved surface roughness is the summation of the
kinematic–dynamic roughness component andmaterial-defect
roughness component. Therefore, the total average surface
roughness Sa for a polycrystalline material is as follows:

Sa= SaKD + SaMD (1)

where SaKD and SaMD represent the kinematic–dynamic
roughness component and material-defect roughness compon-
ent, respectively.

The microdefects on the cutting edge, i.e. tool edge wavi-
ness, have an impact on the achieved surface roughness [30].
In this work, to avoid the influence of tool edge waviness
variation, waviness-controlled diamond tools are employed in
diamond turning experiments. The quantitative evaluation for
the waviness-controlled diamond tool will be introduced in
section 3.2. To obtain the kinematic roughness component, the
surface profile model S(x) at one feed rate should be estab-
lished. The surface profile S(x) is divided into two parts, i.e.
S1(x) and S2(x). S1(x) is related to the tool profile duplication
effect, whereas S2(x) is related to theworkmaterial spring back
and plastic side flow. The coordinate configuration is depicted
in figure 1(b). The position of the diamond tool tip, i.e. the cen-
ter position in one feed rate, is designated as the origin. The
x-axis is in the feed direction, and the y-axis is in the height
direction.

Under this condition, the duplication profile of the diamond
tool on a work material surface at one feed rate is expressed as
follows [31]:

S1 (x) = rε −
√
r2ε − x2

(
− f
2
⩽ x⩽ f

2

)
(2)
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where rε is the tool nose radius and f is the feed rate per
revolution.

The plastic side flow and spring back on a diamond-turned
surface are closely associated with the mechanical properties
of the work materials, e.g. Young’s elastic modulus and hard-
ness. Previous investigations have demonstrated that due to the
coupled effect of these two factors in one feed rate, the surface
profile component follows the parabolic form [19], as follows:

S2 (x) =
4(w− s)

f2
x2 (3)

where w and s are the values of the plastic side flow and mater-
ial spring back at the border and center positions, respectively,
in one feed rate.

Combining the theoretical results of equations (2) and (3),
the kinematic surface profile at one feed rate is calculated as
follows:

S(x) = S1 (x)+ S(x)2 = rε −
√
r2ε − x2 +

4(w− s)
f 2

x2. (4)

To establish the model of the kinematic surface profile, the
material plastic side flow and spring back should be obtained.
The value of plastic side flow is obtained via the following
formula [32, 33]:

w= kdktkfhDminbD (5)

where kd, kt and kf are the size coefficient, tool nose correc-
tion coefficient, and feed rate correction coefficient, respect-
ively. Detailed calculation processes of the three parameters
are depicted in [33]. hDmin is the minimum undeformed chip
thickness, which has a great impact on the formation of the cut-
ting chip and surface roughness. The minimum undeformed
chip thickness is calculated as follows [6]:

hDmin = crn (6)

where c is a coefficient in relation to the contact status between
the diamond tool and work material. For instance, c is 0.35 for
pure copper [6]. For other kinds of work materials, e.g. alu-
minum alloy and steel, the detailed calculation and measure-
ment process for this coefficient has been depicted in [34]. rn
is the cutting edge radius.

In diamond turning, the nominal contact length between the
diamond tool and work material bD, which only accounts for
the geometrical relationship, can be obtained as follows [35]:

bD = rε

[
arcsin

(
f

2rε

)
+ arccos

(
rε − ap
rε

)]
(7)

where ap is the cutting depth in diamond turning.
In addition to the minimum undeformed chip thickness, the

maximum undeformed chip thickness is also calculated due to
its impact on the GB roughness component. In this work, the
maximum undeformed chip thickness is acquired by solving
the following formula [35]:

hDmax = rε −
√
r2ε + f2 − 2f

√
2rεap − a2p. (8)

The material spring back is closely associated with the tool
cutting edge radius, work material mechanical properties and
contact stress between the diamond tool and work material.
In this work, the spring back of the work material is divided
into two categories: a uniform part and a nonuniform part. The
uniform part of the material spring back is in the kinematic
component of roughness, which is calculated according to the
classic mechanics of materials. The nonuniform part is closely
associated with the GB effect, which is further modeled by the
deep learning method. The average contact stress between a
diamond tool and workmaterial was estimated as follows [36]:

σ = kσH

√
H
E

(9)

where kσ is a linear coefficient, which is equal to 4.1 for cop-
per and aluminum alloy Al6061. For the other work material,
a thorough explanation of how this coefficient was determined
has been shown in [36].H and E are the hardness and Young’s
elastic modulus of the work material without any treatment,
respectively. The values of these two mechanical parameters
are 0.98 GPa and 95.28 GPa, which were determined by a sub-
sequent nanoindentation experiment.

The work material under the extrusion effect of the dia-
mond tool’s flank face is in a plastic deformation state (ε⩾ εy,
εy is the yield strain). Hence, the power law of the true
stress/true strain relationship is introduced, which is expressed
as follows [37]:

σ = Kεn (10)

whereK is the strength coefficient and is calculated as follows:

K= σy

(
E
σy

)n

. (11)

ε is the total strain on the plastic deformation condition, which
is the sum of the yield strain and plastic strain, as follows:

ε= εp + εy. (12)

n is the work hardening exponent and is set to 0.466 for copper.
The hardening exponent value for the other work material may
be determined using the nanoindentation experiment [38].

In general, the yield strength of the work material is estim-
ated by the following equation [39]:

σy =
1
3
H. (13)

Therefore, the yield strain of the work material under this
condition is calculated as follows:

εy =
σy

E
=

H
3E

. (14)

The uniform part of the material spring back is calculated
as follows:

s= (1− εp)hDmin (15)

5



Int. J. Extrem. Manuf. 5 (2023) 035102 C He et al

θ

B(ρ, θ)
Bm

BM

O
A zM= S(ρM)+zv(tM)

O A Bm BMB

zm = S(ρm)+zv(tm)

(a) (b)

O

Polar axis

Polar axis

Diamond tool

(c)

Diamond tool tip at Bm
Diamond tool tip at BM

Figure 2. Calculation process of height coordinate. (a) Diamond tool tip trace on the workpiece surface; (b) positions of A, Bm, B, and BM

on the workpiece surface; (c) calculation process for the height coordinate of a given point B on the workpiece surface.

where εp is the plastic strain. Summarizing the theoretical res-
ults in equations (9)–(15), the uniform part of the material
spring back is calculated as follows:

s=

(
1+

H
3E

− k
1
n
σ

31−
1
n

· H
1+ 1

2n

E1+ 1
2n

)
hDmin. (16)

By substituting equations (5) and (16) into equation (4),
the kinematic surface profile model is established. In addition
to the kinematic component, the dynamic component should
also be given adequate attention when the motion error of the
spindle is larger than 20 nm [19]. As indicated in figure 2(a),
the coordinate system is promoted to a cylindrical coordinate
system (ρ, θ, z) considering the influence of relative vibration
between the diamond tool and workpiece surface. The center
of the workpiece surface is designated as the coordinate sys-
tem’s origin. The polar coordinate axis ρ is located in the feed
direction, while the z-axis is located in the height direction.
The trace of the diamond tool tip is an Archimedes spiral with
blue color in figure 2.

For a given point B on the workpiece surface, its position is
between Bm and BM, where Bm and BM are two points on the
diamond tool tip trace, as indicated in figure 2(b). On line OB,
the offset length of the diamond tool tip in one feed rate OA
(OA < f ) is calculated as

εo =
θ

2π
f. (17)

The number of feed rate per revolution f from point A to
point Bm is expressed as

nm =

⌊
ρ− εo
f

⌋
(18)

where ⌊a⌋ is the round down operation for the variable of a,
i.e. finding the largest integer that is not greater than a. For
instance, ⌊3.7⌋ obtains 3 with this operation.

Correspondingly, the number of feed rate per revolution f
from point A to point BM is

nM = nm + 1. (19)

Under this condition, the equivalent coordinate of point A
in terms of point Bm is determined as

ρm = ρ− nm f − εo. (20)

Similarly, the equivalent coordinate of point A in terms of
point BM is determined as

ρM = ρ− nM f − εo. (21)

The z-axis relative vibration between the diamond tool and
workpiece surface has a significant impact on the surface
roughness [40]. Hence, the relative vibration is represented as

zv (t) =
n∑

k=1

Ak sin(2π fkt+φ k) (22)

where Ak is the amplitude of the kth harmonic and fk and φ k

are its vibration frequency and initial phase, respectively. Their
values may be acquired by the accelerometer installed on the
machine tool.

Hence, the height coordinate induced by the diamond tool
at point Bm is

zm = S(ρm)+ zv (tm) . (23)

Similarly, the height coordinate induced by the diamond
tool at the point BM is

zM = S(ρM)+ zv (tM) (24)

where tm and tM are the times at which the diamond tool tip
arrives at point Bm and BM, respectively.

Therefore, the height coordinate at point B is the minimum
value between zm and zM, as shown in figure 2(c), which is
calculated as [19]

z(ρ,θ) =min{zm,zM} . (25)

6
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Hidden layer of neural network Output layer of neural network Output

Grain 
boundary

roughness 
component

Wh1

Bh
Wo

Bo

Wh2

Input matrix

Relative tool 
sharpness

Grain size

Misorientation
angle

Spindle 
rotation speed

Normalization Inverse-normalization

Figure 3. Structure of the two-layered cascade forward neural network applied in this work.

The mean value of the surface profile with the feed rate f is
obtained as [41]

ms =

˜∑ z(ρ,θ)ρdρdθ
˜∑ ρdρdθ

(26)

where Σ represents the diamond turning area with feed rate f.
The kinematic–dynamic roughness component is

computed as

SaKD =

¨
|z(ρ,θ)−ms|ρdρdθ. (27)

Furthermore, if the motion error of the spindle is less than
20 nm, the impact of relative vibration can be neglected [19].
Under this condition, the kinematic–dynamic roughness com-
ponent can be simplified as the kinematic roughness compon-
ent. Hence, the mean value of the kinematic surface profile at
one feed rate is obtained as follows:

ms =
1
f

ˆ − f
2

f
2

S(x)dx. (28)

Correspondingly, the kinematic–dynamic roughness com-
ponent is finally calculated as follows:

SaKD = RaK =
1
f

ˆ f
2

− f
2

|S(x)−ms|dx (29)

where RaK represents the linear surface roughness along the
feed direction.

2.2. Material-defect roughness component

In this work, a deep cascade forward neural network is applied
to model the material-defect roughness component, which is
a classic deep learning method. A cascade forward neural
network is a multilayer feed-forward network composed of
an input layer, hidden layer and output layer, as depicted in
figure 3. Furthermore, a connection from the input variable to
the output layer is also established, which effectively improves
the learning efficiency and prediction accuracy of the network
compared with those of a conventional feed forward neural
network [42].

The learning process is divided into two steps, i.e. the for-
ward propagation of the input data and backpropagation of the
output error. The backpropagation error is applied to obtain the
values of the transfer matrix elements in the network. Previous
investigations have demonstrated that a three-layer neural net-
work is sufficient to approach any nonlinear function [43].
Hence, a three-layer cascade forward neural network is selec-
ted to model the GB roughness component Sad. The activation
functions of the hidden layer and output layer are configured as
the sigmoid function and linear function, respectively. Based
on previous academic achievements on the GB effect, the main
influencing factors are divided into four categories [17–20],
including the ratio of maximum undeformed chip thickness
to cutting edge radius (RTS), average grain size (dg), spindle
rotation speed (ns), and misorientation angle (θg). The smal-
lest rotation angle among the corresponding rotations connect-
ing two given crystal orientations is the misorientation angle
between two adjacent grains, which is commonly employed
to describe the GB geometry. A small misorientation angle
means a small difference in the mechanical properties of two
adjacent grains. Earlier findings have shown that SSGB/PSGB
is closely associated with the misorientation angle [3, 15].
Hence, these four variables are selected as the input layer
variables.

The ratio of the maximum undeformed chip thick-
ness hDmax to the cutting edge radius rn is calculated as
follows:

RTS =
hDmax

rn
=

rε −
√
r2ε + f2 − 2f

√
2rεap − a2p

rn
. (30)

For a cascade forward neural network with four input lay-
ers, the input variable matrix is expressed as follows:

Uo =


RTS1 RTS2 . . . RTSQ

d1 d2 . . . dQ
θm1 θm2 . . . θmQ
n1 n2 . . . nQ


4×Q

(31)

where Q represents the group number of the input variables.
According to equation (31), there areQ groups of input exper-
iment results, and each group contains four values.
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Similarly, corresponding to the input variable matrix, the
output variable matrix is expressed as follows:

Sado =
(
Sad1 Sad2 . . . SadQ

)T
1×Q

. (32)

Before entering the hidden layer, the input and output
matrices first undergo a normalization process. For instance,
for the 1st row in matrix RTS, the normalization value of the ith

RTS is calculated as:

RTS−i = 2
RTS−i−RTS−min

RTS−max −RTS−min
− 1 (33)

whereRTS-min andRTS-max are theminimum andmaximum val-
ues of RTS in the input matrix, respectively. With this process,
the elements in the input and output matrix are transformed
into dimensionless quantities ranging from −1 to 1. After the
normalization process, Sado is transformed into Sad.

The transfer process between the input layermatrix and hid-
den layer matrix is shown as follows:

Xh =Wh1U⊕Bh (34)

where Wh1 and Bh are the weight and threshold matrices in
the hidden layer, respectively. U is the normalized matrix cor-
responding to input matrix Uo. Xh is the hidden layer matrix.
The weight matrix is an S × 4 matrix, which is expressed as
follows:

Wh1 =


w11 w12 w13 w14

w21 w22 w23 w24

. . . . . . . . . . . .
wS1 wS2 wS3 wS4


S×4

(35)

where S is the layer number of the hidden layer. Meanwhile,
the threshold matrix is an S × 1 matrix and is expressed as
follows:

Bh =

 b1
. . .
bS


S×1

. (36)

In particular, the operation ⊕ is suitable for the addition
of different sizes of matrices. For instance, in equation (34),
Wh1U is an S × Q matrix. Therefore, the S × 1 threshold
matrix is first expanded into an S × Q matrix by the column
elements, and then the general matrix plus operation is
performed.

With the activation function in the hidden layer, the output
of the hidden layer is an S × Q matrix, as follows:

Yh = fh (Xh) (37)

where f h(x) is the sigmoid function in the hidden layer and is
expressed as follows:

fh (x) =
2

1+ exp(−2x)
. (38)

Similarly, the data transfer from the hidden layer to the out-
put layer, and the weight matrix and threshold matrix are also
employed as follows:

Xo =WoYh+Wh2U⊕Bo (39)

where Wo and Wh2 are 1 × S and 1 × 4 weight matrices,
respectively, and Bo is a 1 × Q threshold matrix.

Subsequently, with the linear activation function, the output
matrix is as follows:

Sao = fc (Xo) = Xo. (40)

Sao is the calculated value with this neural network, and f o
(x) = x. After obtaining the output values, the mean error is
calculated as follows:

ε1 =
1
Q
∥Sao −Sad∥ (41)

where ∥Sao −Sad∥ is the norm of the difference between
the two matrices Sao and Sad. The values of the weight
matrices and threshold matrices are iteratively optimized with
the Levenberg–Marquardt algorithm until the mean error is
as small as possible. This iterative optimization is the train-
ing process for this cascade forward neural network. With the
trained neural network, the output matrix Sao also undergoes
an inverse-normalization process relative to equation (33), and
the actual values of the GB roughness component are finally
obtained.

With this cascade forward neural network, the calcu-
lation model for the GB roughness component is estab-
lished. Furthermore, the following empirical formula is usu-
ally recommended for the selection of the number of hidden
layers [44]:

n1 =
√
m+ n+α=

√
5+α (42)

where m (=4) and n (=1) are the numbers of input layers and
output layers, respectively, and α is a constant varying from 5
to 10.

To clearly show the calculation process of this hybrid sur-
face roughness model, a flowchart is depicted in figure 4.
The essential input parameters in this model are classified
into three categories, i.e. processing parameters, diamond
tool parameters, and work material parameters. The pro-
cessing parameters include feed rate per revolution (f ), cut-
ting depth (ap) and spindle rotation speed (ns). The diamond
tool parameters include cutting edge radius (rn) and tool nose
radius (rε). Additionally, the workmaterial parameters include
Young’s modulus (E), hardness (H), average grain size (dg),
and average misorientation angle (θg).

To employ this theoretical and deep learning hybrid pre-
diction model, a certain amount of diamond turning exper-
iments should be first performed, and the surface rough-
ness Sa is measured. In addition, the kinematic–dynamic
roughness component SaKD with identical conditions is cal-
culated with the kinematic–dynamic module surrounded by
red lines in figure 4. The material-defect roughness com-
ponent is decoupled by subtracting the kinematic–dynamic
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Figure 4. Flowchart for the calculation process of the hybrid surface roughness model.

roughness component SaKD from the measured roughness Sa.
The cascade forward neural network is trained as shown in
the material-defect module. After the training process, the
deep learning model of the material-defect component is
established.

To predict the surface roughness Sa with this kind of work
material, the kinematic–dynamic roughness component is cal-
culated by the kinematic–dynamic module, and the material-
defect roughness component is predicted by the trained deep
learning model. The prediction result is ultimately acquired by
summing the results from the twomodules. However, when the
workmaterial is changed, there are two cases for application of
this model. For the first case, the mechanical parameters of the
new work material (including Young’s modulus and hardness)
are approximate to those of the former work material, and this
hybridmodel can be immediately applied. For the second case,
the mechanical parameters of the new work material are far
different from those of the former work material, and the same
training process in figure 4 should be performed again.

With the above process, a new surface roughness predic-
tion model for polycrystalline materials has been established.
In particular, only when the impact of relative vibration and
material defects are limited, the prediction model can be valid-
ated by the 2D line roughnessmeasurement results. Otherwise,
it is appropriate to select the 3D surface roughness result to
validate this model because the impact of relative vibration

and material defects cannot be comprehensively reflected on
this condition.

2.3. SAA

In this work, a SAA is applied to obtain the optimal processing
parameters based on the constraint conditions of the pro-
cessing parameters. In this work, the average surface rough-
ness value is configured as the objective function. The optimal
flowchart for SA is shown in figure 5. As depicted, at the start-
ing stage (i.e. the heating period in SAA), an initial solution
P0 is first generated in the range of the constrained conditions.
The iteration number is set to zero, and the initial temperat-
ure is T0. T0 is set to 100 in this work. Subsequently, dur-
ing the annealing period, a new solution P1 is generated and
compared with the previous solution P0. In fact, the values of
the average surface roughness Sa of the two parameters are
calculated, i.e. Sa(P0) and Sa(P1). The difference in the sur-
face roughness values of these two parameters is calculated as
∆Sa = Sa(P1)−Sa(P0). If the value of ∆Sa is less than zero,
the new solution P1 is accepted. Otherwise, the new solution
P1 is conditionally accepted; i.e. it is accepted if the following
condition is satisfied [45]:

1

1+ exp
(
∆Sa
T

) ⩾ δ (43)
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Figure 5. Flowchart for obtaining the optimal processing parameters with the SA algorithm.

where δ is a randomly generated number that varies in [0, 1]
at each iteration step and T is the current temperature. If not
accepted, the solution remains atP0. Subsequently, a new solu-
tion satisfying the constraint conditions is generated and iter-
ated with a similar process.

If the maximum number of iterations (configured as 1000
in this work) is reached, the SAA termination condition is
checked. In this work, if the surface roughness values Sa
obtained for two adjacent groups of processing parameters
Pk and Pk+1 are less than 0.01 nm, the optimization process
is terminated, and the optimal processing parameter is Pk+1.
Otherwise, the temperature is reduced according to the follow-
ing rule (i.e. cooling period in SAA):

T1 = θTT0 (44)

where θT is the reduction coefficient in this work and equals
0.95. With the continuous annealing and cooling stage, the
optimal processing parameters are finally acquired.

3. Materials and methods

3.1. Preparation and analysis of the work material

In this work, to establish the model of the material-defect
roughness component, a work material that has different grain
sizes and misorientation angles is essential. To fulfill this
requirement, pure copper materials are processed by friction
stir treatment technology, which is able to achieve different
material microstructures at different depths [46]. The friction
stir tool is made of H13 die steel (4Cr5MoSiV1), which has
a high toughness and hardness. A previous investigation [47]
revealed that a very small percentage of the friction stir tool’s
elements (<0.1%) were observed on the top surface after pro-
cessing, and the highest penetration depth was approximately
5 nm. Therefore, it is possible to ignore the influence of the
friction stir tool’s elements in this work.

As depicted in figure 6, the radius of the copper working
material is 50mm. The friction stir processing area on thework
material surface has a radius between 8 mm and 36 mm. In our
friction stir processing, the machining depth and tilt angle for
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Figure 6. Illustration of work material processing. (a) Friction stir processing performed on polycrystalline copper; (b) area processed on a
copper surface.

Figure 7. Material analysis for work material. (a) Nanoindentation result for pure copper without treatment; (b) SEM measurement process
for working material B.

the friction stir tool were 0.1 mm and 2 degrees, respectively.
The friction stir tool revolves around the center of the cop-
per surface at a speed of 300 mm min−1. Meanwhile, the fric-
tion stir tool rotates around its own center with rotation rates
of 400 rpm, 800 rpm, and 1600 rpm. In this work, the work
material with no treatment is defined as material A. The mater-
ials processed with rotation speeds of 400 rpm, 800 rpm, and
1600 rpm are defined as materials B, C and D, respectively.
After friction stir processing, the rough processed surfaces of
materials B, C and D as well as material A are pre-flattened
with a cutting depth of 0.1 mm. The cutting depth is equal
to the machining depth of friction stir processing, which can
retain the processed work material.

After preparation of the work materials, material analysis
was performed. Mechanical characteristics analysis of mater-
ial A was performed on a Hysitron TI-Premier nanoindenta-
tion instrument. To accurately evaluate the mechanical char-
acteristics of the work material, four positions on the work
material were randomly selected. The average values acquired
at the four positions were the final measurement results. One
of the nanoindentation curves is depicted in figure 7(a). The

average values of hardness and Young’s elastic modulus of
pure copper without treatment were 0.98 GPa and 95.28 GPa,
respectively. The microstructure of the work material is ana-
lyzed by EBSD technology integrated into a JSM-7800F scan-
ning electron microscope. The SEM measurement process of
work material B is depicted in figure 7(b). The scanning was
performed from the topmost part of the copper and extended
in the depth direction.

As depicted in figure 8(a), the work material grains were
randomly distributed, and some of the grain sizes were
rather large. Hence, under this condition, the measurement
range of material A was configured as 300 µm × 300 µm.
Furthermore, the grain size and misorientation angle distribu-
tions in this total area were counted and calculated, as depic-
ted in figures 8(b) and (c), respectively. According to these
measurement results, the average grain size and misorient-
ation angle were determined to be 50.79 µm and 40.53◦,
respectively.

For working materials B to D, the measurement range was
100 µm × 100 µm to obtain more detailed information on the
microstructure. As demonstrated in figure 9(a), in material B,
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Figure 8. Electron backscattered diffraction (EBSD) analysis results of material A. (a) Material microstructure; (b) grain size distribution of
the total area; (c) misorientation angle distribution of the total area.

obvious gradient-distributed copper grains along the depth dir-
ection are observed. To clearly evaluate grain sizes and mis-
orientation angles at different depths, their distributions are
measured at each ten micrometer layer. The sampling length
of 100 µmused in this procedure ensures that a sufficient num-
ber of work material grains are assessed in the sample region,
as revealed by earlier investigations [48]. The average grain
size and misorientation angle for each layer were acquired as
the input layer values in the subsequent neural network model.
Figures 9(b) and (c) depict the grain size and misorientation
angle distributions for the first ten micrometered layer, which
were obtained from the area surrounded by the black dashed
lines in figure 9(a).

3.2. Preparation of diamond tools

In this work, five waviness-controlled diamond tools were
employed in cutting experiments. The rake angle and flank
angle of the diamond tools were 0◦ and 9◦, respectively. The
criterion of the waviness-controlled diamond tool is based
on the standard deviations of the tool edge waviness within
the opening angle of −4 to 4 degrees according to an earlier
finding [25]. The measurement results of tool edge wavi-
ness for diamond tool 1 and 2 with opening angle of −4 to

4 degrees are shown in figures 10(a) and (b). In particular,
the threshold values of the standard of a waviness-controlled
diamond tool are configured as 60 nm at rε ⩾ 0.1 mm and
30 nm at rε < 0.1 mm. As shown in table 1, the waviness res-
ults of the five diamond tools all fulfill the requirement of a
waviness-controlled diamond tool.

Furthermore, the tool cutting edge radius was measured by
atomic force microscopy (AFM). Figures 10(c) and (d) depict
the 3D surface topography and 2D sectional view measure-
ment results for diamond tool 2. Five different positions on the
3D image were selected to obtain the 2D image. The radius of
the least square circle, i.e. the green circle, in the 2D image
was calculated in figure 10(d). In fact, the measured sectional
profile of the cutting edge is the convolution of the probe tip
geometry and the tool cutting edge, i.e. the radius of the green
circle (rm) in figure 10(d) is the sum of the cutting tool edge
radius (rn) and the AFM probe tip radius (rafm) [49]. In this
work, a new silicon tip with a sharp apex was employed in
the measurement process, and its nominal radius of 8 nm was
provided by the AFM tip manufacturer [50]. Therefore, the
average value of 5 radii from themeasured 2D sectional profile
was first obtained, and the cutting edge radius of the diamond
tool was further determined by subtracting the AFM probe tip
radius (8 nm) from the calculated average value.
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Figure 9. Electron backscattered diffraction (EBSD) analysis results of material B. (a) Material microstructure; (b) grain size distribution in
the 1st layer; (c) misorientation angle distribution in the 1st layer.

3.3. Configuration for cutting experiments

Face turning experiments were performed on a Precitech
Nanoform-X Ultra machine tool, as depicted in figure 11.
Materials A–D were selected as the work materials. To reduce
the influence of diamond tool wear on surface roughness, two
measures were taken in the experiments. The first measure was
the division of the cutting area. In detail, seven areas with dif-
ferent radii were configured on the work material, i.e. 0–8mm,
8–15 mm, 15–22 mm, 22–29 mm, 29–36 mm, 36–43 mm and
43–50 mm. Four areas, i.e. those with radii between 8 and
36mm in figure 6, were friction stir processed, and the remain-
ing areas did not receive treatment. It should be noted that the
variation of material microstructure on the boundary of the
processed area (i.e. 8 mm and 36 mm) is complex. Therefore,
an appropriate distance, i.e. 2 mm, was configured between
the measurement area and the boundary to avoid this impact.
In these seven division areas, the feed rate per revolution val-
ues varied, while the cutting depth and spindle speed values
were the same. In addition, after diamond turning of one face,
the diamond tool was rotated by a tiny angle, and the adjacent
cutting edge was used on the next face turning. The built-up
edge may increase with the cutting distance and cutting speed
at low spindle speeds (<1000 rpm). However, it is beneficial to
eliminate the formation of built-up edges with a short cutting

distance. In this work, the maximum cutting distance for one
feed rate value is only 1.3 km, which can effectively reduce the
formation of the built-up edge. Figure 11(b) shows the meas-
urement results of the cutting edge of diamond tool 2 after the
cutting experiments, where the red circled area is the cutting
edge engaged in the cutting experiments. There are only some
small breakage parts and no obvious built-up edge adhered to
the cutting edge. Therefore, the impact of built-up areas is not
discussed in this work.

In addition, the processing parameter configurations are
listed in table 2, whose ranges cover the common ranges of
these parameters in diamond turning. Rigorous dynamic bal-
ance operation was performed in each group of experiments
to ensure that the motion error of the spindle was less than
10 nm. Under this condition, the influence of relative vibra-
tion between the diamond tool and workpiece surface was also
neglected according to the above discussions.

The roughness of the diamond-turned surface was meas-
ured with a ZYGO 9000 Newview white light interferometer.
The sampling area was 868 µm × 868 µm, which ensured
sufficient surface roughness information over a large area.
Three sampling positions for each group of processing para-
meters were selected, and the average value at these three
positions was taken as the measurement result. The diamond
tools, processing parameters, work material parameters, and
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Figure 10. Measurement results of diamond tool edge. (a) Tool edge waviness result of diamond tool 1; (b) tool edge waviness result of
diamond tool 2; (c) 3D topography of diamond tool 2; (d) 2D sectional profile of the cutting edge of diamond tool 2.

Table 1. Geometrical parameters of the five diamond tools engaged in the turning experiment.

Tool No. 1 2 3 4 5

Tool nose radius (mm) 4.023 2.029 1.014 0.656 3.010
Cutting edge radius (nm) 21.8 27.1 18.6 21.7 35.7
Standard deviation of waviness (nm) 10.5 12.1 8.5 9.6 13.0

measured/predicted surface roughness results are depicted in
detail in the supplemental material.

3.4. Training process of the neural network

The decoupling of the material-defect roughness component
and the corresponding training process follows the guidelines
in figure 4. Specifically, after obtaining the surface rough-
ness value Sa, the kinematic roughness component was calcu-
lated based on the theoretical model established in section 2.1.
According to equation (1), the measurement results of the
material-defect roughness component were obtained by sub-
tracting the kinematic roughness component from the meas-
ured roughness Sa, which was further configured as the out-
put layer of the neural network model. As discussed above,

four variables, i.e. ratio of the maximum undeformed chip
thickness to cutting edge radius (RTS), average grain size
(dg), misorientation angle (θg), and spindle rotation speed
(ns), were configured as the input layer. In this neural net-
work, the total input–output data were divided into two sets,
including a training set and a validation set. The training set
was employed to obtain the parameters in the weight and
threshold matrices. The validation set was employed to val-
idate the accuracy and performance of the developed neural
network. In our investigation, cutting experiments performed
with diamond tools 1, 2 and 4 were configured as the train-
ing set. Cutting experiments performed with diamond tool 3
were used as the validation set. Moreover, diamond tool 5
was employed to perform the cutting experiment with optimal
parameters.
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Figure 11. Illustration of diamond turning conditions. (a) Face
turning experiments with a Precitech Nanoform-X ultra machine
tool; (b) observation of the rake face and flank face after the
diamond turning process.

Table 2. Processing parameter configuration in the diamond turning
experiment.

Spindle speed
Feed rate per
revolution Cutting depth

Dynamic
balance

500–3000 rpm 0.5–15 µm/rev 0.5–10 µm <10 nm

4. Results and discussion

4.1. Validation of the proposed model

According to equation (42), the number of hidden layers
ranges from 8 to 12. To quantitatively evaluate the simula-
tion performance of the cascade forward neural network, four
indices were introduced, including the multiple determination
coefficient (R2), root mean square error (RMSE) [43], relat-
ive prediction error (εr), and total simulation time (Ts). The
value of the multiple determination coefficient varies between
0 and 1. A value close to 1 means that the prediction accuracy
of the neural network is high. Moreover, for the RMSE and
relative prediction error, values close to 0 indicate high pre-
diction accuracy of the developed model. The expression of
the relative prediction error is depicted as follows:

ε=

n∑
k=1

|Sak−me − Sak−pre|
n∑

k=1
Sak−me

× 100% (45)

where Sak–me and Sak–pre are the kth measurement and predic-
tion result of surface roughness, respectively.

The effect of the number of hidden layers on the cascade
forward neural network performance is shown in table 3. As
depicted in table 3, the cascade forward neural network with
ten hidden layers achieves the best prediction performance
with a short simulation time. Hence, the number of hidden
layers is set to 10. The values of the weight and threshold
matrices employed in this work are depicted in appendix. The
difference between the measurement values and prediction

values, i.e. prediction error (prediction error = measurement
value − prediction value), for the training set and validation
set are shown in figure 12. As depicted in figure 12, the pre-
diction errors of both the training set and validation set follow
a Gaussian distribution. The mean value and standard devi-
ation of the prediction error for the training set are 0.003 nm
and 0.040 nm, respectively; while the corresponding values for
validation set are −0.002 nm and 0.063 nm, respectively. The
uncertainty of surface roughness measurement results is

u=

√(
tp

σ√
n

)2

+ u2B (46)

where tp is a correction coefficient and configured as 1.96;
σ is the standard deviation of the measurement results; n is
the number of measurements; uB is the uncertainty in rela-
tion to the measurement instrument, which is configured as
0.1 nm provided by the instrument manufacturer. According to
equation (46), the uncertainty of surface roughness measure-
ment result is 0.1 nm, indicating that the measurement instru-
ment is the primary source of the uncertainty for the measure-
ment result. Overall, the small values of the above calculation
results clearly demonstrate that the prediction accuracy of the
developed model is high.

To further show the accuracy of the prediction model and
demonstrate the introduction of the material-defect rough-
ness component, the kinematic–dynamic roughness compon-
ent SaKD, material-defect roughness component SaMD, predic-
tion roughness result (i.e. the summation of SaKD and SaMD),
and measurement roughness results are depicted in figure 13.
In figure 13(a), the kinematic–dynamic roughness compon-
ent is also the prediction result of the average surface rough-
ness Sa with a previous roughness model proposed in [33].
As revealed in figure 13(a) and [33], the previous model fails
to predict the accurate value of surface roughness with a large
grain size. In contrast, after introduction of the material-defect
roughness component, a high-accuracy prediction model is
acquired and highly consistent with the measurement results,
as demonstrated in figure 13(c). Furthermore, as depicted in
figure 13(b), with the decrease in feed rate per revolution, the
kinematic–dynamic roughness component andmaterial-defect
roughness component all show a downwards trend. However,
the decreasing rate of the material-defect roughness compon-
ent relative to the feed rate per revolution is obviously higher
than that of the kinematic–dynamic roughness component,
which implies that the small feed rate is the favorable con-
dition for reducing the impact of the step structure on the GB.
This finding is also consistent with earlier studies on coarse-
grained polycrystalline ZnSe [3].

In summary, the developed theoretical and deep learn-
ing hybrid model accurately predicted the surface roughness
of polycrystalline materials, which obtains a high predic-
tion accuracy compared with previous pure theoretical model.
In the following section, a comprehensive quantitative study
on the SSGB impact of pure copper is performed with this
developed model.
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Table 3. Effect of the number of hidden layers on the cascade forward neural network performance.

Hidden layers number R2 RMSE (nm) ε Ts (s)

8 0.985 0.154 0.86% 0.318
9 0.986 0.102 0.57% 0.215
10 0.998 0.044 0.33% 0.147
11 0.997 0.092 0.51% 0.146
12 0.997 0.081 0.45% 0.148

(a) (b)
μ=0.003 nm
σ=0.040 nm

μ=−0.002 nm
σ=0.063 nm
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Figure 12. Prediction error distribution for the average surface roughness with the hybrid prediction model. (a) Prediction error of the
training set; (b) prediction error of the validation set.

4.2. Influence of material characteristics

The aim of developing the model in this work is not only to
accurately predict the surface roughness but also to analyze
the factors that affect the material-defect roughness compon-
ent. The material-defect roughness component is further con-
figured as the GB roughness component for pure copper, as
discussed above. Here, we first analyze the influence of mater-
ial characteristics, including grain size and misorientation
angle, on the GB roughness component. The simulation results
of the GB roughness component varying with the misorienta-
tion angle and grain size are depicted in figure 14. In the simu-
lation process, the processing parameters are configured as fol-
lows: cutting depth ap = 5 µm, feed rate f = 3 µm rev−1, and
spindle rotation speed n= 2400 rpm. The grain size andmisor-
ientation angle ranges are set to 4–52µmand 19–42◦., respect-
ively, which cover the work material characteristic parameters
employed in this work.

As depicted in figures 14(a) and (b), with increasing mis-
orientation angle, the GB roughness component monoton-
ously increases. However, with regard to grain size, a different
variation trend is observed. For instance, when the misor-
ientation angle is small, e.g. 20–25◦ in figure 14(b), with
increasing grain size (less than 20 µm), the GB roughness
component first presents an increasing trend. Subsequently,
upon further increasing the grain size (larger than 30 µm), a
decreasing trend for the GB roughness component is demon-
strated. Conversely, with a large misorientation angle, e.g.
36◦, a monotonously increasing trend is shown. The observa-
tion regarding the variation trend of the GB component with
grain size is different from conventional viewpoints, i.e. the

GB roughness component monotonously decreases with grain
size.

To further understand the above complex variation phe-
nomenon, the influencing mechanism of the misorientation
angle and grain size should be analyzed. A small misorient-
ation angle value results in a slight change in the mechan-
ical characteristics of the two adjacent grains, as stated above.
Hence, with the decrease in the misorientation angle, the GB
roughness component correspondingly decreases. This con-
clusion can be validated from the turning experiment results
for polycrystalline and single-crystal work materials. Because
the misorientation angle of the single-crystal work material is
nearly zero, the surface roughness of the single-crystal mater-
ial is smaller than that of the polycrystalline material under the
same cutting conditions [51].

In contrast, according to the Hall–Petch effect, the grain
size of the work material has a great impact on its mechanical
properties, e.g. hardness and elastic modulus. With increas-
ing grain size, both the hardness and elastic modulus decrease.
Correspondingly, the height of the SSGB enlarges and further
increases the GB roughness component [22]. In fact, in fine-
grainedworkmaterial, the plastic deformation ismore uniform
than that of coarse-grained material, which is favorable for
reducing the effect of SSGBon surface roughness.Meanwhile,
the increase in grain size means that the work material grain
number decreases. Therefore, the number of SSGB decreases,
which further decreases the average value of the GB rough-
ness component in a given sampling area. With the joint influ-
ence of the above two effects, the GB roughness component
presents a complex variation trend with a small misorientation
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Figure 13. Analysis of surface roughness component. (a) Comparison between the surface roughness prediction result (i.e.
kinematic–dynamic roughness component) based on an earlier model and the corresponding measurement result in this work; (b) variation
of kinematic–dynamic roughness component and material-defect roughness component in relation to feed rate per revolution;
(c) comparison of surface roughness prediction result using the model in this work and the measurement result; (d) enlarges results in
(c) at the feed rate 4–6 µm r−1. (Machining conditions in diamond turning: work material A, cutting depth 5 µm, and spindle speed
2400 rpm).

Figure 14. Simulation results of the GB roughness component in the validation set (rε = 1.014 mm, ap = 5 µm, f = 3 µm rev−1, and
n = 2400 rpm). (a) Simulation results in 3D form; (b) 2D contour map.

angle. This complex variation in the GB roughness compon-
ent is also consistent with previous experimental investigation
results [52]. However, with the increase in the misorientation
angle (e.g. 34◦ in figure 14(b)), the influence of the misorienta-
tion angle significantly promotes the first effect, i.e. increasing

the height of the SSGB, which further leads to a monotonous
increase in the GB roughness component.

To further validate the above analysis, the surface rough-
ness measurement results under the same cutting condi-
tions (rε = 1.014 mm, ap = 5 µm, f = 4 µm rev−1, and
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Figure 15. Surface roughness measurement results with different misorientation angles and grain sizes (rε = 1.014 mm, ap = 5 µm,
f = 3 µm rev−1, and n = 2400 rpm). (a) Material A; (b) material B; (c) material C; (d) material D.

Table 4. Comparison of the surface roughness with different grain sizes/misorientation angles.

Parameters Material A Material B Material C Material D

Misorientation angle (◦) 50.79 32.82 19.73 26.57
Grain size (µm) 40.53 8.26 4.43 7.08
Predicted roughness component SaKD (nm) 1.812 1.812 1.812 1.812
Predicted roughness component SaMD (nm) 1.260 0.280 0.013 0.157
Predicted surface roughness Sa (nm) 3.072 2.092 1.825 1.969
Measured surface roughness Sa (nm) 3.079 2.145 1.837 1.978
Relative prediction error (%) 0.227 0.476 0.653 0.455

n = 2400 rpm) with different misorientation angles and grain
sizes are shown in figure 15. The corresponding results for the
misorientation angle, grain size, and average surface rough-
ness are depicted in table 4, where the kinematic–dynamic
roughness component SaKD is also the surface roughness pre-
diction result calculated with a conventional model in [33],
which is inconsistent with the measurement results. In con-
trast, the results acquiredwith the hybridmodel accurately pre-
dict the surface roughness, which demonstrates the necessity
of the introduction of a material-defect component.

In figure 15(a), the surface roughness of work material
A without treatment was 3.638 nm, which was the largest
among the four groups of work materials. Obvious SSGBs
were observed on the machined surface, e.g. the encircled

area shown in figure 15(a). Figures 15(b)–(d) show the sur-
face topography measurement results of work materials B, C
and D, respectively. As shown, there was a noticeable reduc-
tion in SSGB on the machined surface. The grain sizes of
materials B and D in figures 15(b) and (d) were similar, and
the misorientation angle of material B in figure 15(b) was lar-
ger than that of material D in figure 15(d). Hence, the surface
roughness in figure 15(b) was larger than that in figure 15(d),
which definitely confirms the influence of the misorientation
angle on the GB roughness component. Additionally, the grain
size and misorientation angle of work material B are smallest
among the four work materials, and its grain size is smaller
than 20 µm. Hence, its surface roughness is smallest among
the four work materials.
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Figure 16. Prediction (with the prefix p-) and measurement results
(with the prefix m-) of the GB roughness component corresponding
to different RTS values (rε = 1.014 mm and n = 2400 rpm).

In summary, to reduce the influence of SSGB in diamond
turning of polycrystalline materials, it is appropriate to reduce
the value of themisorientation angle and select a suitable range
of grain sizes.

4.3. Influence of the ratio of maximum undeformed chip
thickness to cutting edge radius RTS

Previous investigations have shown that RTS has a great impact
on the material removal process, which further affects the
achieved surface finish [53]. In this work, we simulate the
influence of RTS on the GB roughness component in figure 16.
The measurement results are obtained from the validation set.
The misorientation angles and grain sizes for the four mater-
ials are the same as the results in table 3. The spindle speed
is also set to 2400 rpm. As demonstrated, with the decrease
in RTS, the GB roughness components all presented a linearly
decreasing trend, which is consistent with previous investiga-
tion results [6]. However, the linear slope of work material A
is obviously larger than that of the other three work materials,
and the three linear slopes of workmaterials B to D are similar.

To reveal the underlying mechanism for the large linear
slope of material A, the surface topographies of the diamond-
turned surface of work material A at different RTS values
were measured. Figure 17 depicts the surface topography of
work material A at an RTS of 26.034. Under this condition,
obvious large holes are observed on the diamond-turned sur-
face, which is consistent withMoriwaki’s experimental results
[14]. Figure 17(b) depicts the shape of one classic hole on
the surface under 2D conditions. Figure 17(c) is the sectional
view acquired from the area marked by the black line in
figure 17(b). In figure 17(c), the depth of the hole is approx-
imately 37 nm, and the horizontal length is approximately
200 µm. Furthermore, the shape of the hole is obviously dif-
ferent from the ordinary SSGB, as depicted in figure 15(a),

i.e. two oblique boundaries gradually extend from the bottom
to the valley area. Instead, the sectional view of the hole in
figure 17(c) is consistent with the shape of the work material
grain in figure 8(a).

Figure 18 depicts the surface topography measurement res-
ults at a smallerRTS, i.e. 15.7782. As demonstrated, large holes
are no longer observed on the machined surface. Instead, obvi-
ous SSGB is observed. A sectional view of SSGB is shown
in figure 18(c). Different from the shape in figure 14(c), two
straight boundaries extended from the bottom to the valley,
which is the classic topography of an SSGB on a diamond-
turned surface. Furthermore, the depth of the step structure is
approximately 10 nm, which is consistent with the previous
measurement values achieved by Ding et al [20].

In contrast, for work materials B–D, no obvious large holes
were observed on the diamond-turned surface with a large RTS

value. For instance, the measurement results of the diamond-
turned surface with work material C at an RTS of 26.0340
are depicted in figure 19. As demonstrated, only a few small
SSGBs are observed on this diamond-turned surface. In sum-
mary, the large holes and SSGBs that exist on the diamond-
turned surface further result in the large slope of material A in
figure 17.

To further understand the different surface topography phe-
nomena with the same RTS value, the fracture modes of the
grain boundaries were analyzed. In diamond turning, work
material fracture occurs during the work material removal
process. In pure copper, the work material matrix is free of
hard inclusions due to the absence of strengthening elements.
Therefore, the large holes on the diamond-turned surface can-
not be attributed to breaking off of the hard inclusions in the
material matrix. In fact, hard inclusions are usually observed
in metal alloy materials such as Al 6061 [19]. Under this con-
dition, the work material fracture mode is classified into two
categories, i.e. transcrystalline fractures and intercrystalline
fractures. For instance, in figure 20, different colored areas
represent material grains with different crystallographic ori-
entations. In particular, the strength of the GB area has a great
impact on the fracture mode. Material analysis has shown that
for the polycrystalline work material without a strengthening
treatment, the material strength at the GB is usually lower than
that inside the grain [54].

As demonstrated in figure 20(a), under the large RTS

(hDmax/rn) condition, the stripping effect induced by the cut-
ting edge is stronger than the extrusion effect of the flank
face. Hence, in diamond turning with a large RTS value (e.g.
RTS = 26.034) and material A, intercrystalline fracture occurs
at some low-strength GB and further results in large holes on
the diamond-turned surface, as shown in figure 17. In contrast,
with a small RTS value, as demonstrated in figure 20(b), the
equivalent negative rake angle of the diamond tool gradually
increases, which results in enhancement of the extrusion and
burnishing effect induced by the flank surface of the diamond
tool [55]. Under this condition, transcrystalline fractures dom-
inate the material removal mode of material A, which further
results in SSGB, as demonstrated in figure 18. In addition,
for a work material with friction stir processing (strengthen-
ing effect), under the high pressure of the friction stir tool,
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Figure 17. Surface topography of work material A under the condition of RTS = 26.034 (rε = 1.014 mm, ap = 5 µm, f = 5 µm rev−1, and
n = 2400 rpm). (a) 3D surface topography result; (b) 2D planar graph; (c) sectional view of the hole.

Figure 18. Surface topography of work material A under the condition of RTS = 15.7782 (rε = 1.014 mm, ap = 5 µm, f = 3 µm rev−1, and
n = 2400 rpm). (a) 3D surface topography result; (b) 2D planar graph; (c) sectional view of the hole on the machined surface.

Figure 19. Surface topography of work material C under the
condition of RTS = 26.0340 (rε = 1.014 mm, ap = 5 µm,
f = 5 µm rev−1, and n = 2400 rpm). (a) 3D surface topography
result; (b) 2D planar graph.

the polycrystalline material grains were enhanced, which res-
ulted in the strength at the GB being significantly improved.
Therefore, intercrystalline fractures will not occur. Instead,
transcrystalline fractures occur in the work material grains
during diamond turning, as demonstrated in figure 20(c). With
the subsequent rubbing and extrusion effect in relation to the
flank surface of the diamond tool, only small SSGBs formed
on the diamond-turned surface, as demonstrated in figure 19.

In summary, the strengthening effect on the GB and inter-
crystalline/transcrystalline fractures occurringwith a largeRTS

value leads to a higher linear slope of the GB roughness com-
ponent for work material A.

4.4. Influence of spindle rotation speed

To reveal the influence of spindle speed, we simulate variations
in the GB roughness component at different spindle rotation
speeds (500–3000 rpm) and feed rates (3–6 µm rev−1). As
depicted in figure 21, with increasing spindle rotation speed,
the GB roughness components present decreasing trends.
The decreasing line is similar to an inversely proportional
curve, which is consistent with the previous experimental
results [23].

This inversely proportional trend can be roughly under-
stood, as demonstrated in figure 22. For a work grain with
diameter d, the contact time between a diamond tool and a
material grain is calculated as:

t=
d
v
=

30d
πrn

(47)

where r is the distance from the work material center to this
grain and n is the spindle rotation speed.
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Figure 20. Fracture mode of work material in the diamond turning process (the black dashed line denotes the fracture location).
(a) Intercrystalline fracture under large RTS conditions for coarse-grained material A; (b) transcrystalline fracture under small RTS

conditions for coarse-grained material A; (c) transcrystalline fracture for the fine-grained FSP material.

Figure 21. The variations of the GB roughness component for four work materials at different spindle rotation speeds (rε = 1.014 mm,
ap = 5 µm, f = 3–6 µm rev−1, n = 800 rpm and 1600 rpm). (a) Material A; (b) material B; (c) material C; (d) material D.

As demonstrated, with increasing rotation speed n, the
contact time t inversely decreases. Moreover, with a shorter
contact time, the plastic deformation also correspondingly

decreases, which further contributes to the decrease in the
GB roughness component, as analyzed by Melkote et al
[56]. Therefore, the inversely proportional decrease in the GB
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Figure 22. A straightforward model for understanding how
rotational speed affects the GB roughness component.

roughness component was attributed to the decrease in the
contact time between the diamond tool and the work material
grain.

In summary, to effectively suppress the influence of the
GB roughness component on the average surface roughness,
a higher spindle speed is usually preferred.

4.5. Optimization of processing parameters

The above process was used to establish a theoretical and
deep learning hybrid model for predicting the average surface
roughness. Based on this model, we attempt to optimize the
processing parameters to achieve the smallest surface rough-
ness with the SAA. Diamond tool 5 was employed in this pro-
cess. Furthermore, as analyzed above, a large spindle speed
should be selected to control the influence of the GB. Hence,
the spindle rotation speed was set to 3000 rpm. For the pre-
paration of the work material, we employed material C as the
work material, and its first layer (with a grain size of 4.43 µm
and a misorientation angle of 19.73◦) was diamond-turned.
Therefore, the optimized parameters were the cutting depth
and feed rate per revolution.

As analyzed in the above section, with the decrease in the
feed rate and cutting depth, the GB roughness component will
decrease due to the decrease in the RTS value. However, when
the RTS value decreases to a certain degree, the kinematic
roughness component will greatly increase due to the strong
‘size effect’ at a smallRTS value [6]. Hence, inmost cases, with
decreasing cutting depth and feed rate, the surface roughness
Sawill first decrease and then increase. Based on this analysis,
this optimization issue is expressed as follows:

minSa= SaKD + SaMD

s.t.

{
fmin ⩽ f ⩽ fmax

apmin ⩽ ap ⩽ apmax

(48)

where ‘s.t.’ signifies ‘subject to’, which indicates the need to
follow the constraint conditions. The ranges of the feed rate
and cutting depth in equation (48) were set to 0.5–10 µm rev−1

and 0.5–10 µm, respectively.
The difficulty in equation (48) is the highly nonlinear

property of SaKD and SaMD, which is difficult to overcome
with conventional optimal algorithms. In contrast, intelligence
algorithms, e.g. the SAA, are good at solving this type of prob-
lem. The optimal processing parameters indicated by SAA

Figure 23. Surface roughness measurement results achieved with
diamond tool 5 with optimal parameters. (a) Sa 1.308 nm; (b) Sa
1.320 nm.

were a cutting depth ap = 1.31 µm and a feed rate per revolu-
tion f = 0.75 µm rev−1. The optimized result of the average
surface roughness Sawas 1.309 nm. Cutting experiments were
performedwith the above configurations, and the achieved sur-
face finish is shown in figure 23. As depicted, the GB effect on
the diamond-turned surface has been effectively suppressed;
i.e. no obvious SSGB was observed on the diamond-turned
surface. Furthermore, the average value of surface roughness
Sa was set to 1.314 nm, which was also consistent with the
optimization results.

In summary, the model developed in this work not only
accurately predicts surface roughness, but also obtains the
optimization parameters under certain constraint machining
conditions.

5. Conclusions

This study develops a theoretical and deep learning hybrid
model for forecasting the surface roughness of polycrystalline
material, which is then applied to analyze the variables influ-
encing the GB roughness component. The major conclusions
are summarized as follows:

1. A polycrystalline material’s surface roughness is made
up of two parts: a kinematic–dynamic roughness com-
ponent and a material-defect roughness component. Due
to the random distribution of SSGB/PSGB, it is challen-
ging to simulate the material-defect roughness component
using traditional approaches. The prediction model for the
material-defect roughness component is effectively estab-
lished in this work using a deep cascade forward neural
network.

2. SSGB is observed on the diamond-turned polycrystalline
copper surface due to the absence of strengthening elements
in the material matrix. The differences in the mechanical
properties of the adjacent material grains decrease as the
misorientation angle decreases, which lowers the SSGB and
GB roughness components.

3. Under the minor misorientation angle condition (θ ⩽ 25◦),
the GB roughness component did not monotonically
decrease with decreasing grain size due to the com-
bined impact of the height and number of SSGBs. The
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GB roughness component rises with decreasing grain
size under significant misorientation angle (θ > 25◦)
circumstances.

4. Two fracture modes are observed in diamond turning of
pure copper. When the RTS is high (e.g. RTS = 26.034 for
coarse-grained material), transcrystalline fracture occurs.
The cutting edge and flank face extrusion and rubbing
effects are improved with a decrease in the RTS value. In
coarse-grained material under these circumstances, inter-
crystalline cracks take place, which is advantageous for
lowering the GB effect in polycrystalline materials.

5. For fine-grained work materials, intercrystalline fractures
can occur with both small and high RTS values, proving that
grain refinement can help to limit the GB effect.

6. The GB roughness component’s variation trend was shown
to be inversely proportional to the spindle rotation speed,
which is strongly related to the period of time that the dia-
mond tool is in contact with the workpiece. To lessen the
impact of the GB effect on the diamond-turned surface, a
high rotation speed is advised.

7. The surface roughness prediction model and simulated
annealing technique were designed to provide a smooth
surface finish with a surface roughness Sa of 1.314 nm.
The suggested strategy successfully eliminates the impact
of SSGB on surface roughness.
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Appendix. Values of the weight and threshold
matrices

The calculation results for the weight and threshold matrices
of Wh1 and Bh are as follows:

Wh1 =



1.5354 −0.8252 0.7070 1.3345
0.4831 1.1141 0.5157 −0.3012
1.8049 0.0726 0.0766 0.9758
−0.6074 1.1206 0.2066 0.0223
0.4429 2.2253 −1.1515 −0.8800
−0.1060 1.3086 0.8624 −1.0342
−0.9272 −1.1695 −0.5014 −1.0408
0.3370 −0.2839 −1.3325 1.3596
1.4910 0.2095 0.6587 −0.6576
1.3138 0.7855 0.6329 1.7440


10×4

.

The calculation result for the weight matrix of Wh2 is as
follows:

Wh2 = (0.5338 −0.4253 −0.0324 −0.1433)1×4.

The calculation results for the weight and threshold
matrices of Wo and Bo are

Wh2 = (0.2357 1.5373 −0.0760 0.4172 −0.4938 0.2305

−0.1103 0.1893 −0.0945 0.0339)1×10

Bo = 0.2386.
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