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Abstract: Silicon nanofiber clusters were successfully generated by the irradiation of millisecond
pulsed laser light on silicon sludge disposed from wafer back-grinding processes. It was found that the
size, intensity, and growing speed of the laser-induced plume varied with the gas pressure, while the
size and morphology of the nanofibers were dependent on the laser pulse duration. The generated
nanofibers were mainly amorphous with crystalline nanoparticles on their tips. The crystallinity
and oxidation degree of the nanofibers depended on the preheating conditions of the silicon sludge.
This study demonstrated the possibility of changing silicon waste into functional nanomaterials,
which are possibly useful for fabricating high-performance lithium-ion battery electrodes.
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1. Introduction

Nowadays, a huge amount of silicon sludge is continuously produced during the slicing and
grinding processes of single-/poly-crystal silicon wafers in the manufacturing of semiconductor devices
and solar cells. Especially in the back-grinding of ultrathin silicon wafers for memory use, up to 90%
of silicon material will be removed and disposed as sludge. However, it is extremely difficult to reuse
the sludge for silicon ingot production as the sludge contains impurities such as diamond abrasive
grains [1]. In recent years, attempts have been made to reuse the silicon sludge waste as a raw material
for fabricating negative electrodes for lithium ion batteries (LiBs). In our previous work, for example,
silicon sludge was mixed with carbon nanofibers and sintered as a network-structured thick film by
nanosecond pulsed laser irradiation [2]. A mixture of silicon sludge with metal nanoparticles was
sintered by a focused infrared light beam to generate porous and electrically conductive thick films on
copper foils [3]. In addition, a nanosecond pulsed laser was used to process a mixture of silicon sludge
and carbon black to generate silicon micro pillars on a copper foil, which showed ability for absorbing
electrical charge-induced volume expansion of silicon and for performing as negative electrodes of
LiBs [4].

However, the grain size of silicon sludge is quite big, averaging several microns. To further improve
the performance of the silicon-based LiB electrodes, it is important to reduce the grain size of the silicon
sludge, from micron level to 100 nm level or smaller [5,6]. There is an increasing requirement for silicon
nanomaterials such as nanoparticles, nanofibers, and nanowires in the LiB industries [4,7–9]. These
nanomaterials are currently produced from high-purity silicon powders/wafers by vapor–liquid–solid
methods [10,11], or thermal/laser evaporation methods [12–16]. These methods require expensive
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raw materials and deposition systems for catalyst droplets, resulting in high production costs and
additional impurities from the catalyst. Femtosecond pulsed laser ablation has been used for generating
high-purity nanoparticles from pristine silicon wafers, but the production efficiency is low [17,18].
Reducing the grain size of silicon sludge by ball milling has also been attempted by some researchers,
but it is extremely time-consuming and difficult to control the uniformity of particles on the nanometer
scale [19,20].

Recent work by our research group demonstrated the possibility of generating uniform silicon
nanoparticles from silicon sludge generated in multi-wire saw slicing [21] and wafer back-grinding [22]
processes, by nanosecond laser irradiation. For both cases, the generated silicon nanoparticles were
crystalline with an average size of ~10 nm [21,22]. Also, the impurity in silicon sludge, mainly diamond
abrasives, could be vaporized and removed as carbon oxide during laser irradiation; thus, high-purity
silicon nanoparticles were obtainable [21].

Compared with crystalline silicon nanoparticles, amorphous silicon nanoparticles might be more
helpful for lithium ion transportation [23]. In addition, silicon oxide (SiOx) has been found to be
useful in LiB electrodes because of its unique property whereby it plays the role of a buffer layer
against large volumetric change during electrochemical cycling by forming reversible phases of LiO2 or
Li2SiO3 [24,25]. Recently, silicon-catalyzed growth of amorphous SiOx nanowires by continuous-wave
laser ablation of SiOx powders in high-pressure gas was achieved by Kokai et al. [26]. They found that in
Ar or N2 gases, amorphous SiOx nanowires with diameters up to 80 nm were grown, and the nanowires
were attached with spherical crystalline Si nanoparticles at their tips and covered with thin amorphous
SiOx layers [26]. This type of nanomaterial may provide stable photoluminescence and excellent anode
properties in LiB applications; thus, is receiving intensive attention from multidisciplinary research
areas [27,28]. However, there is no available up to date literature on generating amorphous silicon
nanoparticles or nanofibers with SiOx composition from silicon sludge.

In this study, the possibility of generating amorphous silicon nanomaterials, namely nanofibers
with SiOx composition, from silicon grinding sludge by millisecond pulsed laser irradiation without the
use of catalysts, was explored. The effect of laser pulse width, gas pressure, and sludge preheating on
the size, morphology, and crystalline structure of the generated silicon nanomaterials were investigated,
and the mechanism of laser-material interaction was clarified by high-speed camera observation of
plume formation behavior. This study presents an environmentally friendly way to produce advanced
silicon nanomaterials, which have extensive applications in energy storage devices and so on.

2. Materials and Methods

The silicon sludge used in the experiments was produced from the back-grinding process of silicon
wafers, which consists of two steps: rough grinding using resin-bond diamond wheels and fine grinding
using vitrified-bond diamond wheels. Figure 1 shows the SEM photograph and size distribution of the
sludge powder. There are two size peaks at 1.5 and 10.1 µm, respectively, corresponding to the two
grinding steps; and the mean size is 3.9 µm. To prepare targets for laser irradiation, the silicon sludge
was press molded into cylinders (diameter 10 mm, height 10 mm). A few targets were preheated at
400 and 900 ◦C in air for 1 h before laser irradiation to examine the possible effects of sludge oxidation.
The targets were then placed in a chamber filled with Ar gas, as shown in Figure 2. The gas pressure
was varied in the range of 1.3–101 kPa.

Laser irradiation was performed using a specially developed quasi-CW fiber laser with a
wavelength of 1070 nm and a peak power of 500 W. The quasi-CW laser was pulsed by a pulse
generator and the pulse width was varied from 1 to 10 ms. Laser irradiation was performed under
a single-shot mode; thus, there was no pulse overlap. The laser beam had a diameter of 500 µm
at the target surface and a Gaussian energy distribution with a power density of 178 kW/cm2.
The generated silicon nanomaterials were backward transferred onto a glass substrate placed 50 mm
away from the target. The nanomaterials were observed using two scanning electron microscopes
(SEM), the Inspect F50 (FEI Company, Fremont, CA, USA) and the MERLIN Compact (Carl Zeiss
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AG, Oberkochen, Germany), for low and high magnifications, respectively, and characterized using
a transmission electron microscope (TEM) Tecnai G2 (FEI Company, Fremont, CA, USA) with fast
Fourier transform (FFT) analysis, and a laser micro Raman spectrometer NRS-3100 (JASCO Co., Tokyo,
Japan). The laser-induced plume generation was observed by using a high-speed camera FASTCAM
SA5 (Photron Ltd., Tokyo, Japan), and a shadowgraph image of the plume was obtained by using a
light source placed behind the irradiated target. The plume generation was observed at a frame rate of
20,000 fps and a gate time (the time required to capture one frame of image) of 1/1,000,000 s, while the
shadowgraph imaging was performed at 20,000 fps and 1/156,000 s, respectively.
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3. Results and Discussion

3.1. Effect of Gas Pressure

Figure 3 shows SEM micrographs of the nanomaterials that were generated at different gas
pressures at the laser pulse width of 10 ms. At 1.3 kPa, silicon nanoparticles were densely deposited on
the glass substrate (Figure 3a). Between 13–67 kPa, silicon nanofibers were generated. The nanofiber
to nanoparticle ratio increased with pressure (Figure 3b–d). At 101 kPa, nanofiber generation became
dominant and the nanofibers were agglomerated into urchin-like clusters (Figure 3e) in which multiple
nanofibers extended radially from the center of each “urchin”. Nanoparticles can be identified on
the tips of the nanofibers (Figure 3f). Figure 4 is a TEM image of a nanoparticle with a nanofiber
connected to it. The nanoparticle has a size of 23.7 nm and has a crystalline structure, whereas the
nanofiber is 17.3 nm thick and has an amorphous structure. The FFT analysis shows the existence of
{111} lattice planes with an interplanar distance of 3.14 Å in the nanoparticle, and shows the extension
of the nanofiber along the <112> lattice direction.

Nanomaterials 2020, 10, x FOR PEER REVIEW 4 of 12 

 

3. Results and Discussion 

3.1. Effect of Gas Pressure 

Figure 3 shows SEM micrographs of the nanomaterials that were generated at different gas 
pressures at the laser pulse width of 10 ms. At 1.3 kPa, silicon nanoparticles were densely deposited 
on the glass substrate (Figure 3a). Between 13–67 kPa, silicon nanofibers were generated. The 
nanofiber to nanoparticle ratio increased with pressure (Figure 3b–d). At 101 kPa, nanofiber 
generation became dominant and the nanofibers were agglomerated into urchin-like clusters (Figure 
3e) in which multiple nanofibers extended radially from the center of each “urchin”. Nanoparticles 
can be identified on the tips of the nanofibers (Figure 3f). Figure 4 is a TEM image of a nanoparticle 
with a nanofiber connected to it. The nanoparticle has a size of 23.7 nm and has a crystalline structure, 
whereas the nanofiber is 17.3 nm thick and has an amorphous structure. The FFT analysis shows the 
existence of {111} lattice planes with an interplanar distance of 3.14 Å in the nanoparticle, and shows 
the extension of the nanofiber along the <112> lattice direction. 

 
Figure 3. SEM photographs of nanomaterials generated at various gas pressures: (a) 1.3, (b) 13, (c) 40, 
(d) 67, and (e,f) 101 kPa. 

Figure 3. SEM photographs of nanomaterials generated at various gas pressures: (a) 1.3, (b) 13, (c) 40,
(d) 67, and (e,f) 101 kPa.



Nanomaterials 2020, 10, 812 5 of 12

Nanomaterials 2020, 10, x FOR PEER REVIEW 5 of 12 

 

 
Figure 4. TEM images of a nanoparticle connected to a nanofiber generated at a gas pressure of 101 
kPa. 

Figure 5 shows the Raman spectra of nanomaterials generated at various gas pressures. As the 
pressure increases from 1.3 to 101 kPa, the main Raman peak shifts from 518 to 521 cm−1, indicating 
an increase in the average size of the nanomaterials. At 67 and 101 kPa, new peaks are observed at 
511 and 512 cm−1, respectively, indicating the possible generation of nanocrystals in the amorphous 
nanofibers [29–31]. 

 
Figure 5. Raman spectra of silicon nanomaterials generated at different gas pressures. 

3.2. Effect of Laser Pulse Width 

Figure 6 shows SEM photographs of nanomaterials generated at different pulse widths and the 
gas pressure of 101 kPa. The density of the deposited nanomaterials increased with the laser pulse 
width. Next, the average length of the nanofibers was extracted by an image processing program 
ImageJ and plotted in Figure 7. The average length of the nanofibers increased from 147 to 416 nm as 
the pulse width increased from 1 to 10 ms. It is postulated that the continuous supply of precursor 
material throughout the longer pulse contributed to the growth of longer nanofibers. Therefore, the 

In
te

ns
ity

 (a
.u

.) 101

67

40

13

1.3

521 cm-1

521

517

519

518

511

512

kPa

Wave

Figure 4. TEM images of a nanoparticle connected to a nanofiber generated at a gas pressure of 101 kPa.

Figure 5 shows the Raman spectra of nanomaterials generated at various gas pressures. As the
pressure increases from 1.3 to 101 kPa, the main Raman peak shifts from 518 to 521 cm−1, indicating
an increase in the average size of the nanomaterials. At 67 and 101 kPa, new peaks are observed at
511 and 512 cm−1, respectively, indicating the possible generation of nanocrystals in the amorphous
nanofibers [29–31].
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Figure 5. Raman spectra of silicon nanomaterials generated at different gas pressures.

3.2. Effect of Laser Pulse Width

Figure 6 shows SEM photographs of nanomaterials generated at different pulse widths and the gas
pressure of 101 kPa. The density of the deposited nanomaterials increased with the laser pulse width.
Next, the average length of the nanofibers was extracted by an image processing program ImageJ and
plotted in Figure 7. The average length of the nanofibers increased from 147 to 416 nm as the pulse
width increased from 1 to 10 ms. It is postulated that the continuous supply of precursor material
throughout the longer pulse contributed to the growth of longer nanofibers. Therefore, the nanofiber
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length and generation efficiency are controllable by the laser pulse width. As can be seen from the
error bars in Figure 7, the dispersion of the fiber length variation is insignificant, indicating the stability
of the results.
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(c) 5, and (d) 10 ms.
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3.3. Effect of Sludge Oxidation Degree

Figure 8 illustrates the Raman spectra of sludge targets preheated at different temperatures
compared to the spectra of unheated sludge and a pristine silicon wafer. The unheated silicon sludge
has an asymmetric broad peak which can be separated into peaks at 516, 471, and 507 cm−1, indicating
that the grinding sludge is a mixture of nanocrystalline and amorphous silicon as well as SiOx. After
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heating, the peaks are broadened and the peaks around 504–505 cm−1 are enhanced, indicating that the
heated sludge had been significantly oxidized.
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Figure 9 shows SEM photographs of nanomaterials generated from sludge preheated at 400 and
900 ◦C at the gas pressure of 101 kPa and pulse width of 10 ms. For both preheating temperatures,
nanofibers were generated. The length of the nanofibers is shorter and the diameter thicker compared
to the nanofibers generated from the unheated sludge (Figure 3e). This indicates that by preheating
the target, the nanofiber growth was promoted along the radial direction and suppressed along the
longitudinal direction. Figure 10 shows TEM images of nanomaterials generated from sludge preheated
at different temperatures. In Figure 10a, the nanoparticle on the tip of the nanofiber has a crystalline
core with {111} lattice planes, which have an interplanar distance of 3.03 Å, and the nanofiber runs
along the <112> direction. This result is the same as that in Figure 4. However, in Figure 10b, a lattice
structure is hardly observed while the FFT analysis shows only a halo ring, indicating that most
parts of the nanomaterial are amorphous. Figure 11 shows the Raman spectra of the nanomaterials.
By preheating the target at 900 ◦C, a broad peak was generated at approximately 470 cm−1, indicating
that the generated nanomaterial has an amorphous structure. In contrast, crystalline silicon (519 cm−1)
and SiOx (504 cm−1) peaks are observed in the target preheated at 400 ◦C. This result indicates that
the crystallinity of the nanomaterial can be controlled by the preheated temperature of the sludge,
which can contribute to improve the capability of cathodes in lithium ion batteries, because amorphous
silicon and SiOx enhance their retention capacity [23–25].
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3.4. Plume Generation Phenomenon

Plume generation and propagation during laser irradiation were observed, as presented in
Figure 12, where the pulse width was 10 ms. As the Ar gas pressure increased, the size and intensity of
the plume also increased, and the plume propagation lasted for a longer time. At gas pressures higher
than 67 kPa, shining high-temperature columns of the plumes grew steadily with time and lasted even
after the duration of the laser pulse. At pressures lower than 40 kPa, however, the high-temperature
columns of plumes did not grow, and they disappeared right after the duration of the laser pulse.
Instead, extremely small droplets were scattered toward the glass substrate. These differences were
caused by the effect of pressure on plume expansion [32]. At low pressures, the propagating plume
had a long mean free path, resulting in rapid diffusion of the plume and subsequent reduction of
plume density. In contrast, at higher pressures, the smaller mean free path restricted plume diffusion.
The spatial confinement led to stable growth of the high-temperature plume over a long duration
without a sudden reduction of plume intensity. This scenario enabled continuous nanofiber growth
from the nanoparticle cores.
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Figure 12. High-speed camera images of plume propagation at various gas pressures.

Figure 13 shows a high-speed camera image of a propagating plume at 13.4 ms after laser pulse
irradiation at the gas pressure of 101 kPa, and a corresponding shadowgraph. In the plume, dense
vortexes were formed in the vertical direction to the plume propagation (Figure 13a). It is presumed
that the silicon atoms in the propagating plume collide with ambient gas molecules. The collided layer
stays at the outer side of the plume forming vortexes in which a high-temperature and a high-density
atom distribution is generated, as shown in Figure 13b.
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3.5. Mechanism of Nanofiber Cluster Formation

Urchin-like nanofiber clusters are a potential nanomaterial for super high-performance lithium ion
battery electrodes, because they act as a buffer layer due to the excellent resiliency of 1D nanostructured
materials [23]. Figure 14 is a schematic diagram of the urchin-like silicon nanofiber cluster formation
mechanism. The formation of a dense vortex during plume propagation is essential for nanofiber
growth. Inside the plume vortex, crystalline cores are generated from atom clusters, nanodroplets,
and their further aggregation (Figure 14a–c). The crystalline cores grow by absorbing amorphous
silicon and oxygen, which come from the oxide layers of the sludge powders, and reduce the dangling
bonds to lower the surface energy (Figure 14d). The amorphous layers further grow into nanofibers
along the <112> lattice direction (Figure 14e). Among the various lattice surfaces, the {111} surface
has the lowest surface energy. Crystalline cores grow easily along the <112> direction because of
the reduction of the total surface energy [33]. Through the self-catalyst material growth, urchin-like
nanofiber clusters are generated during cooling and deposited on the glass substrate (Figure 14f).
To facilitate the nanofiber cluster generation, a high gas pressure is necessary to enable the propagating
plume to collide with the gas molecules and form high-temperature dense vortexes. In addition, a long
pulse width is essential for providing a sufficiently long time span for nanofiber cluster growth.
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4. Conclusions

Millisecond pulsed laser irradiation was performed on silicon grinding sludge. At low gas
pressures, silicon nanoparticles were generated. Urchin-like silicon nanofiber clusters were generated
at high gas pressures. Silicon nanofibers grew along the <112> lattice direction from crystalline phase
nanoparticle cores. A longer pulse width resulted in longer nanofibers. Moreover, preheating the sludge
at a high temperature promoted amorphous phase formation and silicon oxidation in the nanofibers.
High-speed camera observations confirmed the generation of dense vortexes in the plumes, which
accommodated and provided spatial and temporal conditions for self-catalyst silicon nanofiber growth
and urchin-like nanofiber cluster formation. This study demonstrated the possibility of a cost-effective
method for generating silicon nanomaterials from wafer back-grinding sludge, which contributes to
material resource reuse, sustainable manufacturing of LiBs, and future industrial symbiosis.
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